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Good Design is Easier to Change Than
Bad Design (ETC)
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"Nothing is certain in Software
Development except for bugs and
constatly changing requirements",

Franklin rule
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TestableTestable

"Test Your Software, or Your Users Will"

"If you liked it then you should have put a
test on it", Beyonce rule
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   // Singleton            - Manager::instance() - global variable

   // Untestability        - How to fake Manager?

   // Tight Coupling       - Can we change the speaker?

   const auto& speaker = Manager::instance().get_speakers().get();

   // Duplication - Manager::instance(), same access pattern

   const auto& attendees = Manager::instance().get_attendees().get();

   speaker.talk();

   attendees.ask();

  }
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akaaka

obj1.obj2.obj3.objN...

Manager::instance().get_speakers().get()...

Is breaking the law!
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Law of demeterLaw of demeter

Only talk to your immediate friends!

Manager::instance().get_speakers().get() // Don't chain method calls 👎
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Tightly coupled

Almost impossible to test

Really hard to extend/reuse

Why that's so bad?
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Not a fix!Not a fix!
const auto* speaker = Manager::instance()->get_speakers()->get(); // 👎 

speaker->talk();

auto& manager       = Manager::instance();    // 👎 
auto& speakers      = manager.get_speakers(); // 👎 
const auto& speaker = speakers.get();         // 👎 

speaker.talk();
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By applying SOLID principles the proper way!

By applying Test Driven Development (TDD) /
Behaviour Driven Development (BDD)!
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A class should have only one reason to
change
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 */
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  void talk();

};
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Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)
/**

 * Responsibility: Give a talk

 */

class speaker {

  static constexpr auto name = "Kris"; // Tightly coupled

 public:

  void talk();

};

/**

 * Responsibility: Ask questions

 */

class attendees {

  std::vector names = {"John", "Mike", ...}; // Tightly coupled

 public:

  auto ask();

};
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Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)
class accu_talk {

  speaker speaker_{};      // Tightly coupled

  attendees attendees_{};  // Tightly coupled

 public:

  auto run() {

    speaker.talk();

    attendees.ask();

  }

};
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Flexible?Flexible?

Better but still coupledBetter but still coupled

Scalable?Scalable?

A bit easier to change (ETC) as we can change components in separationA bit easier to change (ETC) as we can change components in separation

Testable?Testable?

Still hard to fake but can be unit-testedStill hard to fake but can be unit-tested
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Design A way to reduce coupling...

C++ Constructors (simpli�ed)
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👍 Whether DI is done right depends on what and how👍 Whether DI is done right depends on what and how
will be passed into constructorswill be passed into constructors
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DI libraries may help in the large scale!
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Tight coupling - No DITight coupling - No DI
class speaker {

  static constexpr auto name = "Kris"; // Tightly coupled

 public:

  auto talk();

};

class accu_talk {

  speaker speaker_{};     // Tightly coupled

  attendees attendees_{}; // Tightly coupled

 public:

  auto run();

};
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class speaker {

  std::string name_{};

 public:

   // 👍 Dependency Injection!!! 
   explicit speaker(std::string name)
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   { }

  auto talk();

};
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Less coupling - Constructor DILess coupling - Constructor DI
class accu_talk {

  speaker speaker_;     // Tightly coupled?

  attendees attendees_; // Tightly coupled?

 public:

  // 👍 Dependency Injection!!! 
  accu_talk(speaker speaker, attendees attendees)

      : speaker_{speaker}, attendees_{attendees}

  { }

  auto run();

};

"Don't call us, we'll call you", Hollywood
principle
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Not using constructors consistentlyNot using constructors consistently
class accu_talk {

  speaker speaker_;                     // Tightly coupled?

 public:

  accu_talk() : speaker_{"Kris"} {}   // Tightly coupled

  auto run();

};
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Using singletonsUsing singletons
class accu_talk {

 public:

  auto run() {

    ...

    speakers::instance().get("Kris").talk(); // how to test?

    ...

  }

};
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Carrying dependenciesCarrying dependencies
class accu_talk {

  speaker speaker_; // Tightly coupled

 public:

  // 👎 Leaky abstraction 
  explicit accu_talk(std::string name)

   : speaker_{name}

  {}

  auto run();

};
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explicit accu_talk(std::string name) : speaker{name} {}      // 👎

explicit accu_talk(speaker speaker)  : speaker_{speaker} {}  // 👍
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Carrying dependencies with inheritanceCarrying dependencies with inheritance
class accu_talk : speaker { // Tightly coupled to `speaker` API

 public:

  explicit accu_talk(std::string name) // Common with CRTP?

   : speaker{name}

  {}

  auto run();

};
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Talking to your distant friendsTalking to your distant friends
class accu_talk {

  speaker speaker_; // Tightly coupled

 public:

  explicit accu_talk(talk_manager& mgr)

      // 👎 Distant friends 
    : speaker_{mgr.get_speakers().get("Kris")}; // difficult to test

  { }

  auto run();

};
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👍 Consider talking only to your immediate friends👍 Consider talking only to your immediate friends
speaker_{mgr.get_speakers().get("Kris")}      // 👎

speaker_{speaker};                            // 👍

Law of demeter!
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Not using strong typesNot using strong types
// 👎 Weak API 
speaker(std::string first_name, std::string last_name);

speaker{"Kris", "Jusiak"}; // 👍 Okay

speaker{"Jusiak", "Kris"}; // 👎 Oops
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Strong types for strong interfacesStrong types for strong interfaces
using first_name = named<std::string, "first name">;

using last_name  = named<std::string, "last name">;

// 👍 Strong API 
speaker(first_name, last_name);

speaker{first_name{"Kris"}, last_name{"Jusiak"}}; // 👍 Okay

speaker{last_name{"Jusiak"}, first_name{"Kris"}}; // 👍 Compile error
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  ...

};
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👍 Consider combining required paremeters together👍 Consider combining required paremeters together
make_speaker(std::string first_name, std::string last_name, ...); // 👎

make_speaker(speaker_info);                                       // 👍
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Dependency Inversion Principle (DIP)Dependency Inversion Principle (DIP)

Depends on abstractions, not on
implementations
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Templates/Concepts

Dependencies known at compile time

Type-Erasure

Run-Time dependency

Inheritance

Never?
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Concepts (C++20)Concepts (C++20)
template <class TSpeaker>

concept Speaker = requires(TSpeaker speaker) {

  { speaker.talk() } -> std::same_as<void>;

};

class regular_speaker { // No inheritance 👍 
 public:

  regular_speaker(first_name, last_name);

  void talk();

};
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Concepts (C++20)Concepts (C++20)
template<Speaker TSpeaker, Attendees TAttendees>

class accu_talk {

  TSpeaker& speaker_;

  TAttendees& attendees_;

 public:

  accu_talk(TSpeaker& speaker, TAttendees& attendees)

    : speaker_{speaker}, attendees_{attendees}

  { }

  auto run();

};
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  Attendees attendees = awesome_attendees{"John", "Mike", ...};

  auto talk           = accu_talk{speaker, attendees};
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}
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WiringWiring

👍 Separates the creation logic from the business logic👍 Separates the creation logic from the business logic

No raw new/make_unique/etc...
except in the wiring
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Composition rootComposition root

A unique location in an application where
modules are composed together

(aka wired together)
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Dependency Inversion PrincipleDependency Inversion Principle
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

ETC appliesETC applies

Testable?Testable?

Yes: We can inject fakes/stubs/mocksYes: We can inject fakes/stubs/mocks
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Can we go too far?Can we go too far?

Absolutely!Absolutely!

Good Design is Easier to Change Than
Bad Design (ETC)
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Can we go too far?Can we go too far?
struct ispeaker_talk {

  virtual ~ispeaker_talk() noexcept = default;

  virtual auto talk() -> void = 0;

}

struct ispeaker_say {

  virtual ~ispeaker_say() noexcept = default;

  virtual auto say() -> void = 0;

}

...

Aiming for 100% coverage! // just for the sake of coverage
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👎 Going too far is a risk!👎 Going too far is a risk!

Like with any approach there is a risk of
going too far without much bene�ts

ETC to the rescue!
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Behavior Driven Development (BDD) / Behavior Driven Development (BDD) / utut
given("I have a accu talk") = [] {

  auto speaker   = fake_speaker{};

  auto attendees = fake_attendees{};

  auto talk      = accu_talk{speaker, attendees};

  when("I run the talk") = [&] {

    talk.run();

  then("The speaker should give a talk") = [&] {

    expect_call(speaker.talk);

  };

  then("The attendees should ask questions") = [&] {

    expect_call(attendees.ask);

  };

  };

};
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BDD/TDDBDD/TDD
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

Yes, BDD/TDD drives ETCYes, BDD/TDD drives ETC

Testable?Testable?

Well, Yeah!Well, Yeah!
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👍 Consider Test Driving your code (BDD/TDD)👍 Consider Test Driving your code (BDD/TDD)

BDD, uses automated examples to guide us
towards building the right thing

TDD uses unit tests to guides us towards building
it right
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Good practises are good practices for a reason!Good practises are good practices for a reason!
SOLID >> STUPID
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Promotes loosely coupled codePromotes loosely coupled code

Makes testing easierMakes testing easier

TDD/BDD, Single Responsibility, Dependency Injecition/Inversion is the way toTDD/BDD, Single Responsibility, Dependency Injecition/Inversion is the way to
go!go!

DI can be easily misused and doesn't require a library/frameworkDI can be easily misused and doesn't require a library/framework
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