

 A PRACTICAL GUIDE TO LOOSE COUPLING

kris@jusiak.net | @krisjusiak | linkedin.com/in/kris-jusiak
https://www.quantlab.com/careers

1 / 72

AgendaAgenda

2 / 72

AgendaAgenda
MotivationMotivation

2 / 72

AgendaAgenda
MotivationMotivation

Loose CouplingLoose Coupling

2 / 72

AgendaAgenda
MotivationMotivation

Loose CouplingLoose Coupling

Law of DemeterLaw of Demeter

2 / 72

AgendaAgenda
MotivationMotivation

Loose CouplingLoose Coupling

Law of DemeterLaw of Demeter

[S]ingle Responsibility[S]ingle Responsibility

2 / 72

AgendaAgenda
MotivationMotivation

Loose CouplingLoose Coupling

Law of DemeterLaw of Demeter

[S]ingle Responsibility[S]ingle Responsibility

......

2 / 72

AgendaAgenda
MotivationMotivation

Loose CouplingLoose Coupling

Law of DemeterLaw of Demeter

[S]ingle Responsibility[S]ingle Responsibility

......

[D]ependency Inversion/Injection[D]ependency Inversion/Injection

2 / 72

AgendaAgenda
MotivationMotivation

Loose CouplingLoose Coupling

Law of DemeterLaw of Demeter

[S]ingle Responsibility[S]ingle Responsibility

......

[D]ependency Inversion/Injection[D]ependency Inversion/Injection

SummarySummary

2 / 72

AgendaAgenda
MotivationMotivation

Loose CouplingLoose Coupling

Law of DemeterLaw of Demeter

[S]ingle Responsibility[S]ingle Responsibility

......

[D]ependency Inversion/Injection[D]ependency Inversion/Injection

SummarySummary

darkblue background - something to remember ✓darkblue background - something to remember ✓
2 / 72

MotivationMotivation

3 / 72

"The only way to go fast is to go well", Uncle Bob"The only way to go fast is to go well", Uncle Bob

4 / 72

"The only way to go fast is to go well", Uncle Bob"The only way to go fast is to go well", Uncle Bob

4 / 72

"The only way to go fast is to go well", Uncle Bob"The only way to go fast is to go well", Uncle Bob

4 / 72

The Essence of Good DesignThe Essence of Good Design

5 / 72

The Essence of Good DesignThe Essence of Good Design

Good Design is Easier to Change Than
Bad Design (ETC)

5 / 72

FlexibleFlexible

6 / 72

FlexibleFlexible

"Nothing is certain in Software
Development except for bugs and
constatly changing requirements",

Franklin rule

6 / 72

ScalableScalable

7 / 72

ScalableScalable

Easy to extend, maintain, reuse

7 / 72

ScalableScalable

Easy to extend, maintain, reuse

7 / 72

TestableTestable

8 / 72

TestableTestable

"Test Your Software, or Your Users Will"

8 / 72

TestableTestable

"Test Your Software, or Your Users Will"

"If you liked it then you should have put a
test on it", Beyonce rule

8 / 72

Loose Coupling / Easier To ChangeLoose Coupling / Easier To Change

9 / 72

Loose Coupling / Easier To ChangeLoose Coupling / Easier To Change

By Example

9 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'

10 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
class accu_talk {

 public:

};

10 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
class accu_talk {

 public:

 [[gnu::always_inline]] auto run() { // Premature Optimization

 }

};

10 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
class accu_talk {

 public:

 [[gnu::always_inline]] auto run() { // Premature Optimization

 // Indescriptive Naming - What's Manager responsibility?

 // Singleton - Manager::instance() - global variable

 // Untestability - How to fake Manager?

 // Tight Coupling - Can we change the speaker?

 const auto& speaker = Manager::instance().get_speakers().get();

 }

};

10 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
class accu_talk {

 public:

 [[gnu::always_inline]] auto run() { // Premature Optimization

 // Indescriptive Naming - What's Manager responsibility?

 // Singleton - Manager::instance() - global variable

 // Untestability - How to fake Manager?

 // Tight Coupling - Can we change the speaker?

 const auto& speaker = Manager::instance().get_speakers().get();

 // Duplication - Manager::instance(), same access pattern

 const auto& attendees = Manager::instance().get_attendees().get();

 }

};

10 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
class accu_talk {

 public:

 [[gnu::always_inline]] auto run() { // Premature Optimization

 // Indescriptive Naming - What's Manager responsibility?

 // Singleton - Manager::instance() - global variable

 // Untestability - How to fake Manager?

 // Tight Coupling - Can we change the speaker?

 const auto& speaker = Manager::instance().get_speakers().get();

 // Duplication - Manager::instance(), same access pattern

 const auto& attendees = Manager::instance().get_attendees().get();

 speaker.talk();

 attendees.ask();

 }

};

10 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'

11 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
Flexible?Flexible?

11 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
Flexible?Flexible?

Not really: Tightly coupledNot really: Tightly coupled

11 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
Flexible?Flexible?

Not really: Tightly coupledNot really: Tightly coupled

Scalable?Scalable?

11 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
Flexible?Flexible?

Not really: Tightly coupledNot really: Tightly coupled

Scalable?Scalable?

Not really: Hard to extendNot really: Hard to extend

11 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
Flexible?Flexible?

Not really: Tightly coupledNot really: Tightly coupled

Scalable?Scalable?

Not really: Hard to extendNot really: Hard to extend

Testable?Testable?

11 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID', 'STUPID'
Flexible?Flexible?

Not really: Tightly coupledNot really: Tightly coupled

Scalable?Scalable?

Not really: Hard to extendNot really: Hard to extend

Testable?Testable?

Not really: Hard to fakeNot really: Hard to fake

11 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID' | Problems, 'STUPID' | Problems

12 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID' | Problems, 'STUPID' | Problems

[S]ingleton

12 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID' | Problems, 'STUPID' | Problems

[S]ingleton

[T]ight Coupling

12 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID' | Problems, 'STUPID' | Problems

[S]ingleton

[T]ight Coupling

[U]ntestability

12 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID' | Problems, 'STUPID' | Problems

[S]ingleton

[T]ight Coupling

[U]ntestability

[P]remature Optimization

12 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID' | Problems, 'STUPID' | Problems

[S]ingleton

[T]ight Coupling

[U]ntestability

[P]remature Optimization

[I]ndescriptive Naming

12 / 72

KISS - KISS - Keep it simpleKeep it simple, 'STUPID' | Problems, 'STUPID' | Problems

[S]ingleton

[T]ight Coupling

[U]ntestability

[P]remature Optimization

[I]ndescriptive Naming

[D]uplication

12 / 72

KISS - KISS - Keep it simpleKeep it simple, 'S([T]ight Coupling)UPID', 'S([T]ight Coupling)UPID'

13 / 72

KISS - KISS - Keep it simpleKeep it simple, 'S([T]ight Coupling)UPID', 'S([T]ight Coupling)UPID'
obj1.obj2.obj3.objN...

13 / 72

KISS - KISS - Keep it simpleKeep it simple, 'S([T]ight Coupling)UPID', 'S([T]ight Coupling)UPID'

akaaka

obj1.obj2.obj3.objN...

Manager::instance().get_speakers().get()...

13 / 72

KISS - KISS - Keep it simpleKeep it simple, 'S([T]ight Coupling)UPID', 'S([T]ight Coupling)UPID'

akaaka

obj1.obj2.obj3.objN...

Manager::instance().get_speakers().get()...

Is breaking the law!

13 / 72

Law of demeterLaw of demeter

14 / 72

Law of demeterLaw of demeter

Only talk to your immediate friends!

14 / 72

Law of demeterLaw of demeter

Only talk to your immediate friends!

Manager::instance().get_speakers().get() // Don't chain method calls 👎

14 / 72

Why that's so bad?

15 / 72

Tightly coupled

Why that's so bad?

15 / 72

Tightly coupled

Almost impossible to test

Why that's so bad?

15 / 72

Tightly coupled

Almost impossible to test

Really hard to extend/reuse

Why that's so bad?

15 / 72

How to �x it?

16 / 72

Not a fix!Not a fix!

17 / 72

Not a fix!Not a fix!
const auto* speaker = Manager::instance()->get_speakers()->get(); // 👎

speaker->talk();

17 / 72

Not a fix!Not a fix!
const auto* speaker = Manager::instance()->get_speakers()->get(); // 👎

speaker->talk();

auto& manager = Manager::instance(); // 👎
auto& speakers = manager.get_speakers(); // 👎
const auto& speaker = speakers.get(); // 👎

speaker.talk();

17 / 72

How to fix it?How to fix it?

18 / 72

How to fix it?How to fix it?

By applying SOLID principles the proper way!

18 / 72

How to fix it?How to fix it?

By applying SOLID principles the proper way!

By applying Test Driven Development (TDD) /
Behaviour Driven Development (BDD)!

18 / 72

SOLID vs 'STUPID'SOLID vs 'STUPID'

19 / 72

SOLID vs 'STUPID'SOLID vs 'STUPID'

S
Single
Responsibility

O Open-close

L
Liskov
substitution

I
Interface
segregation

D
Dependency
inversion

S Singleton

T Tight Coupling

U Untestability

P
Premature
Optimization

I
Indescriptive
Naming

D Duplication
19 / 72

Let's fix it then, shall we 👌Let's fix it then, shall we 👌

20 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)

21 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)

21 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)

A class should have only one reason to
change

21 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)

22 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)
/**

 * Responsibility: Give a talk

 */

class speaker {

 static constexpr auto name = "Kris"; // Tightly coupled

 public:

 void talk();

};

22 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)
/**

 * Responsibility: Give a talk

 */

class speaker {

 static constexpr auto name = "Kris"; // Tightly coupled

 public:

 void talk();

};

/**

 * Responsibility: Ask questions

 */

class attendees {

 std::vector names = {"John", "Mike", ...}; // Tightly coupled

 public:

 auto ask();

};

22 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)

23 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)
class accu_talk {

};

23 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)
class accu_talk {

 speaker speaker_{}; // Tightly coupled

 attendees attendees_{}; // Tightly coupled

};

23 / 72

Single Responsibility Principle (SRP)Single Responsibility Principle (SRP)
class accu_talk {

 speaker speaker_{}; // Tightly coupled

 attendees attendees_{}; // Tightly coupled

 public:

 auto run() {

 speaker.talk();

 attendees.ask();

 }

};

23 / 72

Singleton Responsibility Principle (SRC)Singleton Responsibility Principle (SRC)

24 / 72

Singleton Responsibility Principle (SRC)Singleton Responsibility Principle (SRC)
Flexible?Flexible?

24 / 72

Singleton Responsibility Principle (SRC)Singleton Responsibility Principle (SRC)
Flexible?Flexible?

Better but still coupledBetter but still coupled

24 / 72

Singleton Responsibility Principle (SRC)Singleton Responsibility Principle (SRC)
Flexible?Flexible?

Better but still coupledBetter but still coupled

Scalable?Scalable?

24 / 72

Singleton Responsibility Principle (SRC)Singleton Responsibility Principle (SRC)
Flexible?Flexible?

Better but still coupledBetter but still coupled

Scalable?Scalable?

A bit easier to change (ETC) as we can change components in separationA bit easier to change (ETC) as we can change components in separation

24 / 72

Singleton Responsibility Principle (SRC)Singleton Responsibility Principle (SRC)
Flexible?Flexible?

Better but still coupledBetter but still coupled

Scalable?Scalable?

A bit easier to change (ETC) as we can change components in separationA bit easier to change (ETC) as we can change components in separation

Testable?Testable?

24 / 72

Singleton Responsibility Principle (SRC)Singleton Responsibility Principle (SRC)
Flexible?Flexible?

Better but still coupledBetter but still coupled

Scalable?Scalable?

A bit easier to change (ETC) as we can change components in separationA bit easier to change (ETC) as we can change components in separation

Testable?Testable?

Still hard to fake but can be unit-testedStill hard to fake but can be unit-tested

24 / 72

👍 Consider classes to have only one reason to change👍 Consider classes to have only one reason to change

25 / 72

👍 Consider classes to have only one reason to change👍 Consider classes to have only one reason to change

But what about the coupling?But what about the coupling?

25 / 72

Dependency Injection (DI)?Dependency Injection (DI)?

26 / 72

Dependency Injection (DI)?Dependency Injection (DI)?

26 / 72

Dependency Injection (DI)?Dependency Injection (DI)?

27 / 72

Dependency Injection (DI)?Dependency Injection (DI)?

Design A way to reduce coupling...

27 / 72

Dependency Injection (DI)?Dependency Injection (DI)?

Design A way to reduce coupling...

C++ Constructors (simpli�ed)

27 / 72

👍 Whether DI is done right depends on what and how👍 Whether DI is done right depends on what and how
will be passed into constructorswill be passed into constructors

28 / 72

👍 DI doesn't imply using a library/framework👍 DI doesn't imply using a library/framework

29 / 72

👍 DI doesn't imply using a library/framework👍 DI doesn't imply using a library/framework

DI libraries may help in the large scale!

29 / 72

Tight coupling - No DITight coupling - No DI

30 / 72

Tight coupling - No DITight coupling - No DI
class speaker {

 static constexpr auto name = "Kris"; // Tightly coupled

 public:

 auto talk();

};

30 / 72

Tight coupling - No DITight coupling - No DI
class speaker {

 static constexpr auto name = "Kris"; // Tightly coupled

 public:

 auto talk();

};

class accu_talk {

 speaker speaker_{}; // Tightly coupled

 attendees attendees_{}; // Tightly coupled

 public:

 auto run();

};

30 / 72

Less Coupling - Constructor DILess Coupling - Constructor DI

31 / 72

Less Coupling - Constructor DILess Coupling - Constructor DI
class speaker {

 std::string name_{};

 auto talk();

};

31 / 72

Less Coupling - Constructor DILess Coupling - Constructor DI
class speaker {

 std::string name_{};

 public:

 // 👍 Dependency Injection!!!
 explicit speaker(std::string name)

 : name_{name}

 { }

 auto talk();

};

31 / 72

Less coupling - Constructor DILess coupling - Constructor DI

32 / 72

Less coupling - Constructor DILess coupling - Constructor DI
class accu_talk {

 speaker speaker_; // Tightly coupled?

 attendees attendees_; // Tightly coupled?

 auto run();

};

32 / 72

Less coupling - Constructor DILess coupling - Constructor DI
class accu_talk {

 speaker speaker_; // Tightly coupled?

 attendees attendees_; // Tightly coupled?

 public:

 // 👍 Dependency Injection!!!
 accu_talk(speaker speaker, attendees attendees)

 : speaker_{speaker}, attendees_{attendees}

 { }

 auto run();

};

32 / 72

Less coupling - Constructor DILess coupling - Constructor DI
class accu_talk {

 speaker speaker_; // Tightly coupled?

 attendees attendees_; // Tightly coupled?

 public:

 // 👍 Dependency Injection!!!
 accu_talk(speaker speaker, attendees attendees)

 : speaker_{speaker}, attendees_{attendees}

 { }

 auto run();

};

"Don't call us, we'll call you", Hollywood
principle

32 / 72

Constructor DI - gotchasConstructor DI - gotchas

33 / 72

Constructor DI - gotchasConstructor DI - gotchas

33 / 72

Not using constructors consistentlyNot using constructors consistently

34 / 72

Not using constructors consistentlyNot using constructors consistently
class accu_talk {

 speaker speaker_; // Tightly coupled?

 auto run();

};

34 / 72

Not using constructors consistentlyNot using constructors consistently
class accu_talk {

 speaker speaker_; // Tightly coupled?

 public:

 accu_talk() : speaker_{"Kris"} {} // Tightly coupled

 auto run();

};

34 / 72

👍 Consider using constructor Dependency Injection👍 Consider using constructor Dependency Injection
consistentlyconsistently

35 / 72

👍 Consider using constructor Dependency Injection👍 Consider using constructor Dependency Injection
consistentlyconsistently

accu_talk() : speaker_{"Kris"} {} // 👎

35 / 72

👍 Consider using constructor Dependency Injection👍 Consider using constructor Dependency Injection
consistentlyconsistently

accu_talk() : speaker_{"Kris"} {} // 👎

accu_talk(speaker speaker) : speaker_{speaker} {} // 👍

35 / 72

Using singletonsUsing singletons

36 / 72

Using singletonsUsing singletons
class accu_talk {

 public:

};

36 / 72

Using singletonsUsing singletons
class accu_talk {

 public:

 auto run() {

 ...

 speakers::instance().get("Kris").talk(); // how to test?

 ...

 }

};

36 / 72

👍 Consider avoiding singletons (or inject them via👍 Consider avoiding singletons (or inject them via
constructor)constructor)

37 / 72

👍 Consider avoiding singletons (or inject them via👍 Consider avoiding singletons (or inject them via
constructor)constructor)

speakers::instance().get("Kris") // 👎

37 / 72

👍 Consider avoiding singletons (or inject them via👍 Consider avoiding singletons (or inject them via
constructor)constructor)

speakers::instance().get("Kris") // 👎

accu_talk(speaker speaker) : speaker_{speaker} {} // 👍

37 / 72

Carrying dependenciesCarrying dependencies

38 / 72

Carrying dependenciesCarrying dependencies
class accu_talk {

 speaker speaker_; // Tightly coupled

 auto run();

};

38 / 72

Carrying dependenciesCarrying dependencies
class accu_talk {

 speaker speaker_; // Tightly coupled

 public:

 // 👎 Leaky abstraction
 explicit accu_talk(std::string name)

 : speaker_{name}

 {}

 auto run();

};

38 / 72

👍 Consider passing initialized objects instead of👍 Consider passing initialized objects instead of
parameters to initialize themparameters to initialize them

39 / 72

👍 Consider passing initialized objects instead of👍 Consider passing initialized objects instead of
parameters to initialize themparameters to initialize them

explicit accu_talk(std::string name) : speaker{name} {} // 👎

39 / 72

👍 Consider passing initialized objects instead of👍 Consider passing initialized objects instead of
parameters to initialize themparameters to initialize them

explicit accu_talk(std::string name) : speaker{name} {} // 👎

explicit accu_talk(speaker speaker) : speaker_{speaker} {} // 👍

39 / 72

Carrying dependencies with inheritanceCarrying dependencies with inheritance

40 / 72

Carrying dependencies with inheritanceCarrying dependencies with inheritance
class accu_talk : speaker { // Tightly coupled to `speaker` API

 auto run();

};

40 / 72

Carrying dependencies with inheritanceCarrying dependencies with inheritance
class accu_talk : speaker { // Tightly coupled to `speaker` API

 public:

 explicit accu_talk(std::string name) // Common with CRTP?

 : speaker{name}

 {}

 auto run();

};

40 / 72

👍 Prefer composition over inheritance👍 Prefer composition over inheritance

41 / 72

👍 Prefer composition over inheritance👍 Prefer composition over inheritance
class accu_talk : speaker // 👎

41 / 72

👍 Prefer composition over inheritance👍 Prefer composition over inheritance
class accu_talk : speaker // 👎

class accu_talk { speaker speaker_; // 👍

41 / 72

Talking to your distant friendsTalking to your distant friends

42 / 72

Talking to your distant friendsTalking to your distant friends
class accu_talk {

 speaker speaker_; // Tightly coupled

 auto run();

};

42 / 72

Talking to your distant friendsTalking to your distant friends
class accu_talk {

 speaker speaker_; // Tightly coupled

 public:

 explicit accu_talk(talk_manager& mgr)

 // 👎 Distant friends
 : speaker_{mgr.get_speakers().get("Kris")}; // difficult to test

 { }

 auto run();

};

42 / 72

👍 Consider talking only to your immediate friends👍 Consider talking only to your immediate friends

43 / 72

👍 Consider talking only to your immediate friends👍 Consider talking only to your immediate friends
speaker_{mgr.get_speakers().get("Kris")} // 👎

43 / 72

👍 Consider talking only to your immediate friends👍 Consider talking only to your immediate friends
speaker_{mgr.get_speakers().get("Kris")} // 👎

speaker_{speaker}; // 👍

43 / 72

👍 Consider talking only to your immediate friends👍 Consider talking only to your immediate friends
speaker_{mgr.get_speakers().get("Kris")} // 👎

speaker_{speaker}; // 👍

Law of demeter!

43 / 72

Not using strong typesNot using strong types

44 / 72

Not using strong typesNot using strong types
// 👎 Weak API
speaker(std::string first_name, std::string last_name);

44 / 72

Not using strong typesNot using strong types
// 👎 Weak API
speaker(std::string first_name, std::string last_name);

speaker{"Kris", "Jusiak"}; // 👍 Okay

44 / 72

Not using strong typesNot using strong types
// 👎 Weak API
speaker(std::string first_name, std::string last_name);

speaker{"Kris", "Jusiak"}; // 👍 Okay

speaker{"Jusiak", "Kris"}; // 👎 Oops

44 / 72

Strong types for strong interfacesStrong types for strong interfaces

45 / 72

Strong types for strong interfacesStrong types for strong interfaces
using first_name = named<std::string, "first name">;

using last_name = named<std::string, "last name">;

45 / 72

Strong types for strong interfacesStrong types for strong interfaces
using first_name = named<std::string, "first name">;

using last_name = named<std::string, "last name">;

// 👍 Strong API
speaker(first_name, last_name);

45 / 72

Strong types for strong interfacesStrong types for strong interfaces
using first_name = named<std::string, "first name">;

using last_name = named<std::string, "last name">;

// 👍 Strong API
speaker(first_name, last_name);

speaker{first_name{"Kris"}, last_name{"Jusiak"}}; // 👍 Okay

45 / 72

Strong types for strong interfacesStrong types for strong interfaces
using first_name = named<std::string, "first name">;

using last_name = named<std::string, "last name">;

// 👍 Strong API
speaker(first_name, last_name);

speaker{first_name{"Kris"}, last_name{"Jusiak"}}; // 👍 Okay

speaker{last_name{"Jusiak"}, first_name{"Kris"}}; // 👍 Compile error

45 / 72

👍 Consider using strong types👍 Consider using strong types

46 / 72

👍 Consider using strong types👍 Consider using strong types
speaker(std::string first_name, std::string last_name); // 👎

46 / 72

👍 Consider using strong types👍 Consider using strong types
speaker(std::string first_name, std::string last_name); // 👎

speaker(first_name, last_name); // 👍

46 / 72

Combine required parameters togetherCombine required parameters together

47 / 72

Combine required parameters togetherCombine required parameters together
struct speaker_info {

};

47 / 72

Combine required parameters togetherCombine required parameters together
struct speaker_info {

 first_name first_name;

 last_name last_name;

 ...

};

47 / 72

👍 Consider combining required paremeters together👍 Consider combining required paremeters together

48 / 72

👍 Consider combining required paremeters together👍 Consider combining required paremeters together
make_speaker(std::string first_name, std::string last_name, ...); // 👎

48 / 72

👍 Consider combining required paremeters together👍 Consider combining required paremeters together
make_speaker(std::string first_name, std::string last_name, ...); // 👎

make_speaker(speaker_info); // 👍

48 / 72

Let's make it Let's make it actuallyactually flexible 👌 flexible 👌

49 / 72

Dependency Inversion Principle (DIP)Dependency Inversion Principle (DIP)

50 / 72

Dependency Inversion Principle (DIP)Dependency Inversion Principle (DIP)

50 / 72

Dependency Inversion Principle (DIP)Dependency Inversion Principle (DIP)

Depends on abstractions, not on
implementations

50 / 72

Polymorphism in C++Polymorphism in C++

51 / 72

Polymorphism in C++Polymorphism in C++
InheritanceInheritance

51 / 72

Polymorphism in C++Polymorphism in C++
InheritanceInheritance

Type-ErasureType-Erasure

51 / 72

Polymorphism in C++Polymorphism in C++
InheritanceInheritance

Type-ErasureType-Erasure

std::variant/std::any (C++17)std::variant/std::any (C++17)

51 / 72

Polymorphism in C++Polymorphism in C++
InheritanceInheritance

Type-ErasureType-Erasure

std::variant/std::any (C++17)std::variant/std::any (C++17)

TemplatesTemplates

51 / 72

Polymorphism in C++Polymorphism in C++
InheritanceInheritance

Type-ErasureType-Erasure

std::variant/std::any (C++17)std::variant/std::any (C++17)

TemplatesTemplates

Concepts (C++20)Concepts (C++20)

51 / 72

Polymorphism in C++Polymorphism in C++
InheritanceInheritance

Type-ErasureType-Erasure

std::variant/std::any (C++17)std::variant/std::any (C++17)

TemplatesTemplates

Concepts (C++20)Concepts (C++20)

......

51 / 72

Inheritance Is The Base Class of Evil, Sean ParentInheritance Is The Base Class of Evil, Sean Parent

52 / 72

Inheritance Is The Base Class of Evil, Sean ParentInheritance Is The Base Class of Evil, Sean Parent

52 / 72

https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil

Functional programming design patterns, ScottFunctional programming design patterns, Scott
WlaschinWlaschin

53 / 72

Functional programming design patterns, ScottFunctional programming design patterns, Scott
WlaschinWlaschin

53 / 72

https://www.youtube.com/watch?v=E8I19uA-wGY

Policy Design / Design by introspectionPolicy Design / Design by introspection

54 / 72

Policy Design / Design by introspectionPolicy Design / Design by introspection

54 / 72

https://www.youtube.com/watch?v=29h6jGtZD-U

👍 Consider using proper abstractions for your project👍 Consider using proper abstractions for your project

Templates/Concepts

Type-Erasure

Inheritance

55 / 72

👍 Consider using proper abstractions for your project👍 Consider using proper abstractions for your project

Templates/Concepts

Dependencies known at compile time

Type-Erasure

Inheritance

55 / 72

👍 Consider using proper abstractions for your project👍 Consider using proper abstractions for your project

Templates/Concepts

Dependencies known at compile time

Type-Erasure

Run-Time dependency

Inheritance

55 / 72

👍 Consider using proper abstractions for your project👍 Consider using proper abstractions for your project

Templates/Concepts

Dependencies known at compile time

Type-Erasure

Run-Time dependency

Inheritance

Never?

55 / 72

Concepts (C++20)Concepts (C++20)

56 / 72

Concepts (C++20)Concepts (C++20)
template <class TSpeaker>

concept Speaker = requires(TSpeaker speaker) {

 { speaker.talk() } -> std::same_as<void>;

};

56 / 72

Concepts (C++20)Concepts (C++20)
template <class TSpeaker>

concept Speaker = requires(TSpeaker speaker) {

 { speaker.talk() } -> std::same_as<void>;

};

class regular_speaker { // No inheritance 👍
 public:

 regular_speaker(first_name, last_name);

 void talk();

};

56 / 72

Concepts (C++20)Concepts (C++20)

57 / 72

Concepts (C++20)Concepts (C++20)
template<Speaker TSpeaker, Attendees TAttendees>

57 / 72

Concepts (C++20)Concepts (C++20)
template<Speaker TSpeaker, Attendees TAttendees>

class accu_talk {

 TSpeaker& speaker_;

 TAttendees& attendees_;

 auto run();

};

57 / 72

Concepts (C++20)Concepts (C++20)
template<Speaker TSpeaker, Attendees TAttendees>

class accu_talk {

 TSpeaker& speaker_;

 TAttendees& attendees_;

 public:

 accu_talk(TSpeaker& speaker, TAttendees& attendees)

 : speaker_{speaker}, attendees_{attendees}

 { }

 auto run();

};

57 / 72

Concepts (C++20) - WiringConcepts (C++20) - Wiring

58 / 72

Concepts (C++20) - WiringConcepts (C++20) - Wiring
int main() {

}

58 / 72

Concepts (C++20) - WiringConcepts (C++20) - Wiring
int main() {

 Speaker speaker = regular_speaker{"Kris", "Jusiak"};

}

58 / 72

Concepts (C++20) - WiringConcepts (C++20) - Wiring
int main() {

 Speaker speaker = regular_speaker{"Kris", "Jusiak"};

 Attendees attendees = awesome_attendees{"John", "Mike", ...};

}

58 / 72

Concepts (C++20) - WiringConcepts (C++20) - Wiring
int main() {

 Speaker speaker = regular_speaker{"Kris", "Jusiak"};

 Attendees attendees = awesome_attendees{"John", "Mike", ...};

 auto talk = accu_talk{speaker, attendees};

}

58 / 72

Concepts (C++20) - WiringConcepts (C++20) - Wiring
int main() {

 Speaker speaker = regular_speaker{"Kris", "Jusiak"};

 Attendees attendees = awesome_attendees{"John", "Mike", ...};

 auto talk = accu_talk{speaker, attendees};

 talk.run();

}

58 / 72

WiringWiring

59 / 72

WiringWiring

👍 Separates the creation logic from the business logic👍 Separates the creation logic from the business logic

59 / 72

WiringWiring

👍 Separates the creation logic from the business logic👍 Separates the creation logic from the business logic

No raw new/make_unique/etc...
except in the wiring

59 / 72

Composition rootComposition root

60 / 72

Composition rootComposition root

A unique location in an application where
modules are composed together

(aka wired together)

60 / 72

Dependency Inversion PrincipleDependency Inversion Principle

61 / 72

Dependency Inversion PrincipleDependency Inversion Principle
Flexible?Flexible?

61 / 72

Dependency Inversion PrincipleDependency Inversion Principle
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

61 / 72

Dependency Inversion PrincipleDependency Inversion Principle
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

61 / 72

Dependency Inversion PrincipleDependency Inversion Principle
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

ETC appliesETC applies

61 / 72

Dependency Inversion PrincipleDependency Inversion Principle
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

ETC appliesETC applies

Testable?Testable?

61 / 72

Dependency Inversion PrincipleDependency Inversion Principle
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

ETC appliesETC applies

Testable?Testable?

Yes: We can inject fakes/stubs/mocksYes: We can inject fakes/stubs/mocks

61 / 72

Can we go too far?Can we go too far?

62 / 72

Can we go too far?Can we go too far?

Absolutely!Absolutely!

62 / 72

Can we go too far?Can we go too far?

Absolutely!Absolutely!

Good Design is Easier to Change Than
Bad Design (ETC)

62 / 72

Can we go too far?Can we go too far?

63 / 72

Can we go too far?Can we go too far?
struct ispeaker_talk {

 virtual ~ispeaker_talk() noexcept = default;

 virtual auto talk() -> void = 0;

}

63 / 72

Can we go too far?Can we go too far?
struct ispeaker_talk {

 virtual ~ispeaker_talk() noexcept = default;

 virtual auto talk() -> void = 0;

}

struct ispeaker_say {

 virtual ~ispeaker_say() noexcept = default;

 virtual auto say() -> void = 0;

}

63 / 72

Can we go too far?Can we go too far?
struct ispeaker_talk {

 virtual ~ispeaker_talk() noexcept = default;

 virtual auto talk() -> void = 0;

}

struct ispeaker_say {

 virtual ~ispeaker_say() noexcept = default;

 virtual auto say() -> void = 0;

}

...

63 / 72

Can we go too far?Can we go too far?
struct ispeaker_talk {

 virtual ~ispeaker_talk() noexcept = default;

 virtual auto talk() -> void = 0;

}

struct ispeaker_say {

 virtual ~ispeaker_say() noexcept = default;

 virtual auto say() -> void = 0;

}

...

Aiming for 100% coverage! // just for the sake of coverage

63 / 72

👎 Going too far is a risk!👎 Going too far is a risk!

64 / 72

👎 Going too far is a risk!👎 Going too far is a risk!

Like with any approach there is a risk of
going too far without much bene�ts

64 / 72

👎 Going too far is a risk!👎 Going too far is a risk!

Like with any approach there is a risk of
going too far without much bene�ts

ETC to the rescue!

64 / 72

And what about testing?And what about testing?

65 / 72

Behavior Driven Development (BDD) / Behavior Driven Development (BDD) / utut

66 / 72

https://github.com/boost-ext/ut

Behavior Driven Development (BDD) / Behavior Driven Development (BDD) / utut
given("I have a accu talk") = [] {

};

66 / 72

https://github.com/boost-ext/ut

Behavior Driven Development (BDD) / Behavior Driven Development (BDD) / utut
given("I have a accu talk") = [] {

 auto speaker = fake_speaker{};

 auto attendees = fake_attendees{};

 auto talk = accu_talk{speaker, attendees};

};

66 / 72

https://github.com/boost-ext/ut

Behavior Driven Development (BDD) / Behavior Driven Development (BDD) / utut
given("I have a accu talk") = [] {

 auto speaker = fake_speaker{};

 auto attendees = fake_attendees{};

 auto talk = accu_talk{speaker, attendees};

 when("I run the talk") = [&] {

 talk.run();

 };

};

66 / 72

https://github.com/boost-ext/ut

Behavior Driven Development (BDD) / Behavior Driven Development (BDD) / utut
given("I have a accu talk") = [] {

 auto speaker = fake_speaker{};

 auto attendees = fake_attendees{};

 auto talk = accu_talk{speaker, attendees};

 when("I run the talk") = [&] {

 talk.run();

 then("The speaker should give a talk") = [&] {

 expect_call(speaker.talk);

 };

 then("The attendees should ask questions") = [&] {

 expect_call(attendees.ask);

 };

 };

};

66 / 72

https://github.com/boost-ext/ut

BDD/TDDBDD/TDD

67 / 72

BDD/TDDBDD/TDD
Flexible?Flexible?

67 / 72

BDD/TDDBDD/TDD
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

67 / 72

BDD/TDDBDD/TDD
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

67 / 72

BDD/TDDBDD/TDD
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

Yes, BDD/TDD drives ETCYes, BDD/TDD drives ETC

67 / 72

BDD/TDDBDD/TDD
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

Yes, BDD/TDD drives ETCYes, BDD/TDD drives ETC

Testable?Testable?

67 / 72

BDD/TDDBDD/TDD
Flexible?Flexible?

Yes: Loosely coupledYes: Loosely coupled

Scalable?Scalable?

Yes, BDD/TDD drives ETCYes, BDD/TDD drives ETC

Testable?Testable?

Well, Yeah!Well, Yeah!

67 / 72

👍 Consider Test Driving your code (BDD/TDD)👍 Consider Test Driving your code (BDD/TDD)

68 / 72

👍 Consider Test Driving your code (BDD/TDD)👍 Consider Test Driving your code (BDD/TDD)

BDD, uses automated examples to guide us
towards building the right thing

68 / 72

👍 Consider Test Driving your code (BDD/TDD)👍 Consider Test Driving your code (BDD/TDD)

BDD, uses automated examples to guide us
towards building the right thing

TDD uses unit tests to guides us towards building
it right

68 / 72

SummarySummary

69 / 72

Good practises are good practices for a reason!Good practises are good practices for a reason!

70 / 72

Good practises are good practices for a reason!Good practises are good practices for a reason!
SOLID >> STUPID

70 / 72

Law of demeterLaw of demeter

71 / 72

Law of demeterLaw of demeter
Promotes loosely coupled codePromotes loosely coupled code

71 / 72

Law of demeterLaw of demeter
Promotes loosely coupled codePromotes loosely coupled code

Makes testing easierMakes testing easier

71 / 72

Law of demeterLaw of demeter
Promotes loosely coupled codePromotes loosely coupled code

Makes testing easierMakes testing easier

TDD/BDD, Single Responsibility, Dependency Injecition/Inversion is the way toTDD/BDD, Single Responsibility, Dependency Injecition/Inversion is the way to
go!go!

71 / 72

Law of demeterLaw of demeter
Promotes loosely coupled codePromotes loosely coupled code

Makes testing easierMakes testing easier

TDD/BDD, Single Responsibility, Dependency Injecition/Inversion is the way toTDD/BDD, Single Responsibility, Dependency Injecition/Inversion is the way to
go!go!

DI can be easily misused and doesn't require a library/frameworkDI can be easily misused and doesn't require a library/framework

71 / 72

Law of Demeter: A Practical Guide to Loose CouplingLaw of Demeter: A Practical Guide to Loose Coupling

https://www.quantlab.com/careershttps://www.quantlab.com/careers

72 / 72

https://www.quantlab.com/careers

Law of Demeter: A Practical Guide to Loose CouplingLaw of Demeter: A Practical Guide to Loose Coupling

Let'sLet's

"only talk to our immediate friends""only talk to our immediate friends"
https://www.quantlab.com/careershttps://www.quantlab.com/careers

72 / 72

https://www.quantlab.com/careers

Law of Demeter: A Practical Guide to Loose CouplingLaw of Demeter: A Practical Guide to Loose Coupling

Let'sLet's
!!

"only talk to our immediate friends""only talk to our immediate friends"
https://www.quantlab.com/careershttps://www.quantlab.com/careers

72 / 72

https://www.quantlab.com/careers

