\W OF DEMETER

A PRACTICAL GUIDE TO LOOSE COUPLING

S JUSIAK

kris@jusiak.net | @krisjusiak | linkedin.com/in/kris-jusiak
https://www.quantlab.com/careers

1/72

Agentda

Agentda

o Motivation

2/72

Agentda

o Motivation

e [oose Coupling

2/72

Agentda

e Motivation
e [oose Coupling

= |aw of Demeter

2/72

Agentda

o NMotivation
e [oose Coupling
= |aw of Demeter

o [$]ingle Responsibility

2/72

Agentda

e Motivation
e [oose Coupling
= |aw of Demeter
o [S]ingle Responsibility

O [1]]

2/72

Agenta

e Motivation
e [oose Coupling
= |aw of Demeter
o [$]ingle Responsibility

o [D]ependency Inversion/Injection

2/72

Agenta

e Motivation
e [oose Coupling
= [aw of Demeter
o [S]ingle Responsibility
o [D]ependency Inversion/Injection

e Summary

2/72

Agenta

e Motivation
e [oose Coupling
= [aw of Demeter
o [S]ingle Responsibility
o [D]ependency Inversion/Injection

e Summary

darkblue background - something to remember v
2/72

Motivation

"The only way to go fast is to go well®, Uncle Bob

4/72

"The only way to go fast is to go well®, Uncle Bob

BRACL
Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

Foreword by James O. Coplien Robert C. Martin

4/72

"The only way to go fast is to go well®, Uncle Bob

:_; EEEEEEEE
~e HALL
Robert C. Martin Series .

Clean Code

A Handbook of Agile Software Craftsmanship

DaviD THOMAS

) ANDREW HUNT

Foreword by James O. Coplien Robert C. Martin

4/72

The Essence of Good Design

The Essence of Good Design

Good Design is Easier to Change Than
Bad Design (ETC)

5/72

Flexible

6/72

Flexible

"Nothing is certain in Software
Development except for bugs and
constatly changing requirements’,

Franklin rule

6/72

Scalable

7172

Scalable

Easy to extend, maintain, reuse

7172

Scalable

Easy to extend, maintain, reuse

7172

Testahle

8/72

Testahle

"Test Your Software, or Your Users Will"

8/72

Testahle

"Test Your Software, or Your Users Will"

"If you liked it then you should have put a
test on it", Beyonce rule

8/72

Loose Coupling / Easier To Change

Loose Coupling / Easier To Change

By Example

KIS - Keesit-simpte, 'STUPID'

KIS - Keesit-simpte, 'STUPID'

class accu talk {
public:

Iy

10/72

KIS - Keesrit-simpte, 'STUPID'

class accu talk {
public:

[[gnu::always inline]] auto run() { // Premature Optimization

¥

10/72

KIS - Keesit-simpte, 'STUPID'

class accu talk {
public:

[[gnu::always inline]] auto run() { // Premature Optimization

// Indescriptive Naming What's Manager responsibility?

// Singleton - Manager::instance () - global variable
// Untestability - How to fake Manager?
// Tight Coupling - Can we change the speaker?

const auto& speaker = Manager::instance () .get speakers () .get();

T

10/72

KIS - Keesit-simpte, 'STUPID'

class accu talk {

public:
[[gnu::always inline]] auto run() { // Premature Optimization
// Indescriptive Naming - What's Manager responsibility?
// Singleton - Manager::instance () - global variable
// Untestability - How to fake Manager?
// Tight Coupling - Can we change the speaker?
const auto& speaker = Manager::instance () .get speakers () .get();
// Duplication - Manager::instance (), same access pattern
const auto& attendees = Manager::instance () .get attendees() .get();

T

10/72

KIS - Keesit-simpte, 'STUPID'

class accu talk {

public:
[[gnu::always inline]] auto run() { // Premature Optimization
// Indescriptive Naming - What's Manager responsibility?
// Singleton - Manager::instance () - global variable
// Untestability - How to fake Manager?
// Tight Coupling - Can we change the speaker?

const auto& speaker = Manager::instance () .get speakers () .get();

// Duplication - Manager::instance (), same access pattern
const auto& attendees = Manager::instance () .get attendees() .get();

speaker.talk () ;
attendees.ask () ;

T

10/72

KISS - Keep-tsimpte, 'STUPID!

KISS - Keep-tsimpte, 'STUPID!

o Flexible?

KISS - Keep-t-simpte, 'STUPID!

o Flexible?

= Not really: Tightly coupled

KISS - Keep-t-simpte, 'STUPID!

o Flexible?

= Not really: Tightly coupled

o Scalahle?

1/72

KISS - Keep-tsimpte, 'STUPID!

o Flexible?

= Not really: Tightly coupled
e Scalahle?

= Not really: Hard to extend

1/72

KISS - Keep-tsimpte, 'STUPID!

o Flexible?

= Not really: Tightly coupled
e Scalahle?

= Not really: Hard to extend

o Testahle?

1/72

KISS - Keep-t-simpte, 'STUPID!

o Flexible?

= Not really: Tightly coupled
e Scalahle?

= Not really: Hard to extend
o Testahle?

= Not really: Hard to fake

1/72

KISS - keep-it-sinpte, 'STUPID' | Problems

KISS - keep-it-sinpte, 'STUPID' | Problems

e [Slingleton

KISS - keep-it-sinpte, 'STUPID' | Problems

e [Slingleton
e [T]ight Coupling

KISS - keep-it-sinpte, 'STUPID' | Problems

e [Slingleton
e [T]ight Coupling
e [U]ntestability

KISS - keep-it-sinpte, 'STUPID' | Problems

e [Slingleton
e [Tlight Coupling
e [U]ntestability

e [P]remature Optimization

12/72

KISS - keep-it-sinpte, 'STUPID' | Problems

e [Slingleton
e [Tlight Coupling
e [U]ntestability

e [P]remature Optimization

e [I]ndescriptive Naming

12/72

KISS - keep-it-sinpte, 'STUPID' | Problems

e [Slingleton
e [Tlight Coupling
e [U]ntestability

e [P]remature Optimization

e [I]ndescriptive Naming

e [D]uplication

12/72

KISS - keep-itsirmpte, 'S([Tlight Coupling)UPID’

KISS - keep-itsirmpte, 'S([Tlight Coupling)UPID’

KISS - keep-itsirmpte, 'S([Tlight Coupling)UPID’

objl.obj2.0bj3.0bjN...

aka

Manager::instance () .get speakers () .get()...

13/72

KISS - keep-itsirmpte, 'S([Tlight Coupling)UPID’

objl.obj2.0bj3.0bjN...

aka

Manager::instance () .get speakers () .get()...

Is breaking the law!

13/72

Law of demeter

Law of demeter

Only talk to your immediate friends!

14/72

Law of demeter

Only talk to your immediate friends!

Manager: :instance () .get speakers () .get () // Don't chain method calls &

14/72

Why that's so bad?

15/72

Why that's so bad?

e Tightly coupled

15/72

Why that's so bad?

e Tightly coupled

e Almost impossible to test

15/72

Why that's so bad?

e Tightly coupled
e Almost impossible to test

e Really hard to extend/reuse

15/72

How to fix it?

16/72

Not a fix!

Not a fix!

const auto* speaker = Manager::instance()->get speakers()->get(); // S

speaker->talk () ;

17172

Not a fix!

How to fix it?

How to fix it?

e By applying SOLID principles the proper way!

18/72

How to fix Iit?

e By applying SOLID principles the proper way!

e By applying Test Driven Development (TDD) /
Behaviour Driven Development (BDD)!

18/72

SOLID vs "STUPID’

SOLID vs "STUPID’

Single

e S Singleton
Responsibility . |
T Tight Coupling
Open-close ”
: U Untestability
Liskov
substitution P m
Optimization
Interface u
segregation | mp_tlve
Naming
Dependency, o
inversion D Duplication

19/72

Let's fix it then, shall we 3

Single Responsihility Principle (SRP)

Single Responsihility Principle (SRP)

Just because you can doesn’'t mean you should.

21172

Single Responsihility Principle (SRP)

Just because you can doesn’'t mean you should.

A class should have only one reason to
change

21172

Single Responsibility Principle (SRP)

Single Responsibility Principle (SRP)

/**

* Responsibility: Give a talk

*/
class speaker {

static constexpr auto name = "Kris"; // Tightly coupled
public:

void talk() ;
i

22172

Single Responsibility Principle (SRP)

/**

* Responsibility: Give a talk

*/
class speaker {

static constexpr auto name = "Kris"; // Tightly coupled
public:

void talk() ;
i

/**

* Responsibility: Ask questions

*/
class attendees {

std: :vector names = {"John", "Mike", ...}; // Tightly coupled
public:

auto ask();

b g

22172

Single Responsibility Principle (SRP)

Single Responsibility Principle (SRP)

class accu talk {

Single Responsibility Principle (SRP)

class accu talk {

speaker speaker {}; // Tightly coupled
attendees attendees {}; // Tightly coupled

23/72

Single Responsibility Principle (SRP)

class accu talk {

speaker speaker {}; // Tightly coupled
attendees attendees {}; // Tightly coupled

public:
auto run() {
speaker.talk() ;
attendees.ask () ;

}

23172

Singleton Responsibility Principle (SRC)

Singleton Responsibility Principle (SRC)

o Flexible?

Singleton Responsibility Principle (SRC)
o Flexible?

m Better but still coupled

Singleton Responsibility Principle (SRC)
o Flexible?

m Better but still coupled

o Scalahle?

Singleton Responsibility Principle (SRC)
o Flexible?

m Better but still coupled
e Scalahle?

= A bit easier to change (ETC) as we can change components in separation

24172

Singleton Responsibility Principle (SRC)
o Flexible?

m Better but still coupled
e Scalahle?

= A bit easier to change (ETC) as we can change components in separation

o Testahle?

24172

Singleton Responsibility Principle (SRC)
o Flexible?

m Better but still coupled
e Scalahle?

= A bit easier to change (ETC) as we can change components in separation

o Testahle?

® Still hard to fake but can be unit-tested

24172

¢ Consider classes to have only one reason to change

¢ Consider classes to have only one reason to change

But what about the coupling?

Dependency Injection (DI)?

Dependency Injection (DI)?

26/72

Dependency Injection (DI)?

Dependency Injection (DI)?

Design A way to reduce coupling...

27172

Dependency Injection (DI)?

Design A way to reduce coupling...

C++ Constructors (simplified)

27172

¢ Whether DI is done right depends on what and how
will be passed into constructors

¢ DI doesn't imply using a library/framework

¢ DI doesn't imply using a library/framework

Dl libraries may help in the large scale!

Tight coupling - No DI

Tight coupling - No DI

class speaker {
static constexpr auto name = "Kris"; // Tightly coupled

public:

auto talk():;
§

30/72

Tight coupling - No DI

class speaker {
static constexpr auto name = "Kris"; // Tightly coupled

public:
auto talk():;
iy

class accu talk {

speaker speaker {}; // Tightly coupled
attendees attendees {}; // Tightly coupled

public:

auto run() ;

i

30/72

Less Coupling - Constructor DI

Less Coupling - Constructor DI

class speaker {
std::string name {};

auto talk();
Vo

31/72

Less Coupling - Constructor DI

class speaker {
std::string name {};

public:
// & Dependency Injection!!!
explicit speaker(std::string name)
: name {name}

{}

auto talk();
v

31/72

Less coupling - Constructor DI

Less coupling - Constructor DI

class accu talk {
speaker speaker ; // Tightly coupled?
attendees attendees ; // Tightly coupled?

auto run() ;

¥

32/72

Less coupling - Constructor DI

class accu talk {
speaker speaker ; // Tightly coupled?
attendees attendees ; // Tightly coupled?

public:
// & Dependency Injection!!!
accu_talk (speaker speaker, attendees attendees)
speaker {speaker}, attendees {attendees}

{3

auto run() ;

¥

32/72

Less coupling - Constructor DI

class accu talk {
speaker speaker ; // Tightly coupled?
attendees attendees ; // Tightly coupled?

public:
// & Dependency Injection!!!
accu_talk (speaker speaker, attendees attendees)
: speaker {speaker}, attendees {attendees}

{}

auto run() ;

¥

"Don't call us, we'll call you", Hollywood
principle

32/72

Constructor DI - gotchas

Constructor DI - gotchas

| NEVER MAKE THE
'SAME MISTAKE
TWICE.

| MAKE

IT5-6
TIMES,

JUST TO
BE SURE.

33/72

Not using constructors consistently

Not using constructors consistently

class accu talk {
speaker speaker ; // Tightly coupled?

auto run() ;

¥

34/72

Not using constructors consistently

class accu talk {

speaker speaker ; // Tightly coupled?
public:
accu talk() : speaker {"Kris"} {} // Tightly coupled

auto run() ;

¥

34/72

S Consider using constructor Dependency Injection
consistently

S Consider using constructor Dependency Injection
consistently

accu talk() : speaker {"Kris"} {} // §

S Consider using constructor Dependency Injection
consistently

accu_talk() : speaker {"Kris"} ({} //§

accu_talk(speaker speaker) : speaker {speaker} {} // &

35/72

Using singletons

Using singletons

class accu talk {
public:

36/72

Using singletons

class accu talk {
public:

auto run () {

speakers::instance () .get ("Kris") .talk(); // how to test?

36/72

¢ Consider avoiding singletons (or inject them via
constructor)

¢ Consider avoiding singletons (or inject them via
constructor)

speakers::instance () .get ("Kris") // @

¢ Consider avoiding singletons (or inject them via
constructor)

speakers: :instance () .get ("Kris") /] §

accu_talk (speaker speaker) : speaker {speaker} {} /] &

37172

Carrying dependencies

Carrying dependencies

class accu talk {
speaker speaker ; // Tightly coupled

auto run() ;

¥

38/72

Carrying dependencies

class accu talk {
speaker speaker ; // Tightly coupled

public:
// & Leaky abstraction
explicit accu talk(std::string name)
speaker {name}

{}

auto run{() ;

¥

38/72

¢ Consider passing initialized objects instead of
parameters to initialize them

¢ Consider passing initialized objects instead of
parameters to initialize them

explicit accu talk(std::string name) : speaker{name} {} /]

¢ Consider passing initialized objects instead of
parameters to initialize them

explicit accu talk(std::string name) : speaker{name} {} /]

explicit accu talk(speaker speaker) : speaker {speaker} {} // &

39/72

Carrying dependencies with inheritance

Carrying dependencies with inheritance

class accu talk : speaker { // Tightly coupled to "speaker API

auto run() ;

i

40/72

Carrying dependencies with inheritance

class accu talk : speaker { // Tightly coupled to "speaker API

public:
explicit accu talk(std::string name) // Common with CRTP?
speaker {name}

{}

auto run() ;

i

40/72

S Prefer composition over inheritance

S Prefer composition over inheritance

accu talk : speaker // &

S Prefer composition over inheritance

class accu talk : speaker /] §

class accu talk { speaker speaker ; // &

41/72

Talking to your distant friends

Talking to your distant friends

class accu talk {
speaker speaker ; // Tightly coupled

auto run() ;

¥

42172

Talking to your distant friends

class accu talk {
speaker speaker ; // Tightly coupled

public:
explicit accu talk(talk manager& mgr)
// & Distant friends
speaker {mgr.get speakers().get("Kris")}; // difficult to test

{}

auto run() ;

¥

42172

¢ Consider talking only to your immediate friends

¢ Consider talking only to your immediate friends

speaker {mgr.get speakers().get ("Kris")} // &

¢ Consider talking only to your immediate friends

speaker {mgr.get speakers().get ("Kris")} // &

speaker {speaker}; /] &

43/72

¢ Consider talking only to your immediate friends

speaker {mgr.get speakers().get ("Kris")} // &

speaker {speaker}; /] &

Law of demeter!

43/72

Not using strong types

Not using strong types

// & Weak API
speaker (std::string first name, std::string last name);

44 /72

Not using strong types

// & Weak API
speaker (std::string first name, std::string last name);

speaker{"Kris", "Jusiak"}; //) Okay

44 /72

Not using strong types

// & Weak API
speaker (std::string first name, std::string last name);

speaker{"Kris", "Jusiak"}; //) Okay

speaker{"Jusiak"™, "Kris"}; // & Oops

44 /72

Strong types for strong interfaces

Strong types for strong interfaces

using first name = named<std::string, "first name">;
using last name = named<std::string, "last name">;

45/72

Strong types for strong interfaces

using first name = named<std::string, "first name">;
using last name = named<std::string, "last name">;

// & Strong API
speaker (first name, last name);

45/72

Strong types for strong interfaces

using first name = named<std::string, "first name">;
using last name = named<std::string, "last name">;

// & Strong API
speaker (first name, last name);

speaker{first name{"Kris"}, last name{"Jusiak"}}; // & Okay

45/72

Strong types for strong interfaces

using first name = named<std::string, "first name">;
using last name = named<std::string, "last name">;

// & Strong API
speaker (first name, last name);

speaker{first name{"Kris"}, last name{"Jusiak"}}; // & Okay

speaker{last name{"Jusiak"}, first name{"Kris"}}; // & Compile error

45/72

& Consider using strong types

S Consider using strong types

speaker (std::string first name, std::string last name); //

46 /72

S Consider using strong types

speaker (std::string first name, std::string last name); //

speaker (first name, last name); /] &

46 /72

Combine required parameters together

Combine required parameters together

struct speaker info {

Combine required parameters together

struct speaker info {

first name first name;
last name last name;

iy

47172

¢ Consider combining required paremeters together

¢ Consider combining required paremeters together

make speaker(std::string first name, std::string last name, ...); // S

48 /72

¢ Consider combining required paremeters together

make speaker(std::string first name, std::string last name, ...); // G

make speaker (speaker info); // &

48 /72

let's make it actua 1 1y flexible &

Dependency Inversion Principle (DIP)

Dependency Inversion Principle (DIP)

Dependency Inversion Principle

Would you solder a lamp directly
to the electrical wiring in a wall?

50/72

Dependency Inversion Principle (DIP)

Dependency Inversion Principle

Would you solder a lamp directly
to the electrical wiring in a wall?

Depends on abstractions, not on
implementations

50/72

Polymorphism in C++

Polymorphism in C++

e |nheritance

Polymorphism in C++

e |nheritance

e Type-Erasure

51/72

Polymorphism in C++

e [nheritance
e Type-Erasure

e std:variant/std::any (C++17)

51/72

Polymorphism in C++
e |nheritance
e Type-Erasure
o std:variant/std::any (C++17)

e Templates

51/72

Polymorphism in C++

e |nheritance

e Type-Erasure

o std:variant/std::any (C++17)
e Templates

e Concepts (C++20)

51/72

Polymorphism in C++

e |nheritance

e Type-Erasure

o std:variant/std::any (C++17)
e Templates

e Concepts (C++20)

51/72

Inheritance Is The Base Class of Evil, Sean Parent

Inheritance Is The Base Class of Evil, Sean Parent

Inheritance Is The Base Class of Evil

https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil

Functional programming design patterns, Scott
Wiaschin

Functional programming design patterns, Scott
Wiaschin

N m pattern/principle FP equivalent

q.

—

O
N

new DevelopersConference(); : -} =R B

1-5 December - London,UK * Single Responsibility Principle .

* Open/Closed principle * Functions
~ p——

T (+ Dependency Inversion . (F‘L;;ctiong also
SINCE 2008 \
INspIring \Brincipe _)J e

g

Developers

Interface Segregation Functions
Principle

Factory pattern You will be assimilated!
Strategy pattern Functions again
Decorator pattern Functions

Visitor pattern Resistance is futile!

.\
y

> Pl o 4:21/1:05:43

53/72

https://www.youtube.com/watch?v=E8I19uA-wGY

Policy Design / Design by introspection

Policy Design / Design by introspection

Design by Introspection
DConf 2017

Andrei Alexandrescu, Ph.D.

2017-05-06

https://www.youtube.com/watch?v=29h6jGtZD-U

¢ Consider using proper abstractions for your project

e Templates/Concepts
e Type-Erasure

e Inheritance

¢ Consider using proper abstractions for your project

e Templates/Concepts
= Dependencies known at compile time

e Type-Erasure

e Inheritance

55/72

¢ Consider using proper abstractions for your project

e Templates/Concepts

= Dependencies known at compile time
e Type-Erasure

= Run-Time dependency

e Inheritance

55/72

¢ Consider using proper abstractions for your project

e Templates/Concepts

= Dependencies known at compile time
e Type-Erasure

= Run-Time dependency
e |nheritance

= Never?

55/72

Concepts (C++20)

Concepts (C++20)

template <class TSpeaker>
concept Speaker = requires (TSpeaker speaker) {
{ speaker.talk() } -> std::same as<void>;

i

56 /72

Concepts (C++20)

template <class TSpeaker>

concept Speaker = requires (TSpeaker speaker) {
{ speaker.talk() } -> std::same as<void>;

I

class regular speaker { // No inheritance &
public:
regular speaker (first name, last name);
void talk();

¥

56/72

Concepts (C++20)

Concepts (C++20)

template<Speaker TSpeaker, Attendees TAttendees>

57/72

Concepts (C++20)

template<Speaker TSpeaker, Attendees TAttendees>

class accu talk {
TSpeaker& speaker ;
TAttendeesé& attendees ;

auto run() ;

¥

57/72

Concepts (C++20)

template<Speaker TSpeaker, Attendees TAttendees>

class accu talk {
TSpeaker& speaker ;
TAttendeesé& attendees ;

public:
accu_talk (TSpeakeré& speaker, TAttendeesé& attendees)
speaker {speaker}, attendees {attendees}

{}

auto run() ;

i

57/72

Concepts (C++20) - Wiring

Concepts (C++20) - Wiring

Concepts (C++20) - Wiring

int main () {

Speaker speaker = regular speaker{"Kris", "Jusiak"};

58/72

Concepts (C++20) - Wiring

int main () {
Speaker speaker = regular speaker{"Kris", "Jusiak"};
Attendees attendees = awesome attendees{"John", "Mike", ...};

58/72

Concepts (C++20) - Wiring

int main () {
Speaker speaker = regular speaker{"Kris", "Jusiak"};
Attendees attendees = awesome attendees{"John", "Mike", ...};
auto talk = accu_talk{speaker, attendees};

58/72

Concepts (C++20) - Wiring

int main () {
Speaker speaker = regular speaker{"Kris", "Jusiak"};
Attendees attendees = awesome attendees{"John", "Mike", ...};
auto talk = accu_talk{speaker, attendees};

talk.run () ;

58/72

Wiring

Wiring
S Separates the creation logic from the business logic

Wiring
S Separates the creation logic from the business logic

Noraw new/make unique/etc...
except in the wiring

Composition root

Composition root

A unique location in an application where
modules are composed together

(aka wired together)

60/72

Dependency Inversion Principle

Dependency Inversion Principle

o Flexible?

Dependency Inversion Principle

o Flexible?

= Yes: Loosely coupled

Dependency Inversion Principle

o Flexible?

= Yes: Loosely coupled

o Scalahle?

Dependency Inversion Principle

o Flexible?

= Yes: Loosely coupled
e Scalahle?

= ETCapplies

61/72

Dependency Inversion Principle

o Flexible?

= Yes: Loosely coupled
e Scalahle?

= ETCapplies

o Testahle?

61/72

Dependency Inversion Principle

o Flexible?

= Yes: Loosely coupled
e Scalahle?

= ETC applies
o Testable?

= Yes: We can inject fakes/stubs/mocks

61/72

Gan we go too far?

Gan we go too far?

Absolutely!

Gan we go too far?

Absolutely!

Good Design is Easier to Change Than
Bad Design (ETC)

62/72

Can we go too far?

Can we go too far?

struct ispeaker talk ({
virtual ~ispeaker talk() noexcept = default;
virtual auto talk() -> wvoid = 0;

63/72

Can we go too far?

struct ispeaker talk ({

virtual ~ispeaker talk() noexcept = default;
virtual auto talk() -> wvoid = 0;

struct ispeaker say {

virtual ~ispeaker say () noexcept = default;
virtual auto say() -> void = 0;

63/72

Gan we go too far?

struct ispeaker talk ({

virtual ~ispeaker talk() noexcept = default;
virtual auto talk() -> wvoid = 0;

struct ispeaker say {

virtual ~ispeaker say () noexcept = default;
virtual auto say() -> void = 0;

63/72

Can we go too far?

struct ispeaker talk ({

virtual ~ispeaker talk() noexcept = default;
virtual auto talk() -> wvoid = 0;

struct ispeaker say {

virtual ~ispeaker say () noexcept = default;
virtual auto say() -> void = 0;

Aiming for 100% coverage! // just for the sake of coverage

63/72

3 Going too far is a risk!

3 Going too far is a risk!

Like with any approach there is a risk of
going too far without much benefits

64/72

3 Going too far is a risk!

Like with any approach there is a risk of
going too far without much benefits

ETC to the rescue!

64/72

And what ahout testing?

Behavior Driven Development (BDD) / ut

https://github.com/boost-ext/ut

Behavior Driven Development (BDD) / ut

https://github.com/boost-ext/ut

Behavior Driven Development (BDD) / ut

given ("I have a accu talk") = [] {
auto speaker = fake speaker{};
auto attendees = fake attendees{};
auto talk = accu_ talk{speaker, attendees};

i

66/72

https://github.com/boost-ext/ut

Behavior Driven Development (BDD) / ut

given ("I have a accu talk") = [] {

auto speaker = fake speaker{};
auto attendees = fake attendees{};
auto talk = accu_ talk{speaker, attendees};

when ("I run the talk") = [&] {
talk.run () ;

i

66/72

https://github.com/boost-ext/ut

Behavior Driven Development (BDD) / ut

given ("I have a accu talk") = [] {

i

auto speaker = fake speaker{};
auto attendees = fake attendees{};
auto talk = accu_ talk{speaker, attendees};

when ("I run the talk") = [&] {
talk.run () ;

then ("The speaker should give a talk") = [&] {
expect call (speaker.talk);
i

then ("The attendees should ask questions") = [&]
expect call (attendees.ask);

¥

iy

66/72

https://github.com/boost-ext/ut

BDD/TDD

BDD/TDD

o Flexible?

67/72

BDD/TDD

o Flexible?

= Yes: Loosely coupled

67/72

BDD/TDD

e Flexible?
= Yes: Loosely coupled

o Scalable?

67/72

BDD/TDD

e Flexible?
= Yes: Loosely coupled

o Scalable?

= Yes BDD/TDD drives ETC

67/72

BDD/TDD

e Flexible?
= Yes: Loosely coupled

o Scalable?

= Yes BDD/TDD drives ETC

o Testahle?

67/72

BDD/TDD

e Flexible?
= Yes: Loosely coupled

o Scalable?

m Yes BDD/TDD drives ETC
o Testahle?

= Well Yeah!

67/72

¢ Consider Test Driving your code (BDD/TDD)

¢ Consider Test Driving your code (BDD/TDD)

e BDD, uses automated examples to guide us
towards building the right thing

68/72

¢ Consider Test Driving your code (BDD/TDD)

e BDD, uses automated examples to guide us
towards building the right thing

e TDD uses unit tests to guides us towards building
it right

68/72

Summary

Good practises are good practices for a reason!

Good practises are good practices for a reason!

SOLID >> STUPID

Law of demeter

Law of demeter

e Promotes loosely coupled code

Law of demeter

e Promotes loosely coupled code

o [akes testing easier

71172

Law of demeter

e Promotes loosely coupled code
o [Makes testing easier

e TDD/BDD, Single Responsibility, Dependency Injecition/Inversion is the way to
go!

71172

Law of demeter

e Promotes loosely coupled code
o Makes testing easier

o TDD/BDD, Single Responsibility, Dependency Injecition/Inversion is the way to
go!
e DI can be easily misused and doesn't require a library/framework

71172

Law of Demeter: A Practical Guide to Loose Goupling

https://www.quantlab.com/careers

https://www.quantlab.com/careers

Law of Demeter: A Practical Guide to Loose Coupling

Let's

"only talk to our immediate friends”

https://www.quantlab.com/careers

https://www.quantlab.com/careers

Law of Demeter: A Practical Guide to Loose Coupling

Let's
!

"only talk to our immediate friends”

https://www.quantlab.com/careers

https://www.quantlab.com/careers

