HOW CODE FAILS IN THE REAL
WORLD

JAMES TURNER

Background

>
>
>
>

James Turner, james@|flightgear.org | kdab.com]
C++ developer for 25+ years
Consultant developer at KDAB
Contributed to open-source projects for 20+ years
» Assorted feature work, especially around Ul/UX
» Build and release engineering

Often the point of contact for end-user problem reports

FlightGear

» Legacy C++ codebase
» Open-source, many contributors
» Runs on all major desktop platforms

» Extensively data-driven via XML and scripfts
» Loads user-generated content
» Including scripts
» Confent downloaded during runtime
» OpenGL
» Free-form threading

5 Stages of a user-reported failure

Denial : ‘that can’t happen’
Anger : ‘how the <expletive> does that happen'’
Bargaining : ‘if you change X, does it still happene’

Depression : ‘| hate computers’

>
>
>
>
>

Acceptance : ‘Ohhhhhhhhh. | hate computers. Fix is pushed.’

What | thought going into this

Users report the software is ‘more unstable than the last version’
» Getting good feedback is hard

On macOS & Linux, some users would send backtraces

» Much easier to fix the issues

» Let'sintegrate a crash reporter and life will be better!

Crash-reporting technology pieces

» Crash-reporting library or process
» deployed with your application

» Build you app in release mode with debug symbols
» If using CMake, use RelWithDeblinfo with care

» Extract / archive those symbols (PDBs, dSYM etc)

» Strip the code before packaging & deployment

» Automate this on CI (Jenkins)

... And achieve nothing ...

» CrashRpt
» Simple, Windows only

» HTTP POST to an end-point you supply
» To a directory on my DreamHost

» Directory full of zipped MiniDuMps

... And the pieces that make it usetul

>
>
>
>
>

Aggregation backend (web service)

Symbolication with vendor symbols (Microsoft, Intel, AMD, nVidiq)
Correlating symbol artefacts to builds / releases

Annotating runs with meta-data

Statistical grouping based on metadata

» What was the user doing?

» What important configuration is sete

» What anomalous things have already occurred?

Well, if we already have a reporting backend, let's collect this
information as the program runs. When a crash occurs, we can include
It in the report, and hopefully make any trends clearer.

Practical Notes

» For FlightGear, I'm using Sentry.io
» Also used at KDAB by some customers
» APIs for many languages
» native backend wraps Crashpad or Breakpad
» Command-line tool fo upload symbols, define releases, etc
Offers various self-hosting and hosted solutions
| can heartily recommend it (#notsponsored)

» They accept pull requests and respond to bug reports

The ‘typical’ crash

» Expected to find code as shown on the auto myPtr = getFoo();
ight myPtr->engageRotor();
» Steps to reproduce are reliable Airport* a:
» Code-read in the problem area if (o && a->getTower()->getPosition()) { ...

» Trivial fo fix with crash frace

An anthology of crashes

>
>
>
>
>

Computers are slow

Users are very impatient (or Ul is bad)

Archaic hardware

Weird system configurations

File-systems (especially on Windows) fail in all kinds of ways
» %$@!$# OneDrive

malloc() does actually fail

Impatience

Database built on first run

» Takes 1-5 minutes
Progress dialog runs on the main thread

Rebuild task uses a worker thread
internally

DatabaseRebuildTask 1;
t.start();

ProgressDialog d;
d.setUpdateCallback([&t, &d]() {
if (t.isDone()) d.close();

d.setProgress(t.getPercentComplete

()
1

d.exec();

// continue with application startup
// do something using the DB
// crash, DB is not built yete!

More Impatience

>
>
>
>

Custom Ul for menubar, inside the window
macOS uses native menubar
GUl is initialised during early startup

Splash screen blocks window event interaction during loading

Still more impatience

Code as shown Startup::onLaunchMainThing
- {
Crash preparing some stuff orepareSomeStuf():
» Twice, whate closeStartupWindow();
» Multiple clicks on the button }
before the window actually
Closes
StartupWindow s;
s.exec();

// cool, startup is done, continue with
main thing

Malloc, etc

» C++ (eg, STL) throws std::bad_alloc
» Caughtin various places, hard to debug

» set new handler to the recusel

» Explicitly log an error report (and backtrace)

Slowness, network style

HTTP check for new update on startup
Reports back to startup GUI
HTTP requests are ref-counted, cleaned up once done

For some users, timeout after a long time

vV v v Vv Vv

Startup GUl is gone

Solution: add proper cancellation APl to HTTP requests, so a
cancelled request doesn’t report failure when cancelled

Drivers ®

vV v v Vv

Check available OpenGL versions

» Give some clear user feedback if we can't run
Check when first window is created

» NOPE
Attempt to create an offscreen context
Check the version which is retfurned
Still crashes on some ancient Intel drivers

Delicate ordering of calls seems to fix most cases

(Your) over-confidence is your

weakness

» “Cool, the number of crash reports is manageable. How about non-crashing failures”

» Record stack-trace in constructor of our base exception class

Qo00[Ps.

100x Increase ®

Non-crash failures

» Downloaded files
» Just broken (malformed XML)
» replaced with firewall / proxy error HTML
» appearing as 0-bytes
» Ul leading to broken setups
Gross configuration errors (non-parseable files)
Non-supported OpenGL surface / texture formats

» Quite a few of these do crash however :-)

DontReadMe.ixt

Content (aircraft) downloaded as a Zip

» Relative paths inside the content (textures, Ul files) referenced relative to
the directory name

» GitHub setfs an automatic directory name
» Based on the branch

» Download page, readme, etc:
» ‘You must rename the directory to foobar’

» All files are ‘notf found’

SQLITE BlgSh

» SQLite allows concurrent processes to access the DB
» Users (un-)intentionally launch multiple copies

» APIsreturn BUSY to indicate you should retry

» Fine, DB exec wrapper does a loop+sleep+back-off
» Still getting occasional BUSY errorse!

Query prepare call on startup can also fail

Old paths

» List of add-on paths
» Added by user from file picker
» Saved /loaded to persistent preferences
» Validate paths on load

» GUIl view of paths

» Initialise from list of paths, skip missing paths

» Invalid paths persist internally forever ®

Conclusions

Trend Analysis

» First version containing an issue is invaluable

» Eventually ®
Correlation of tag data gives clues
Uptake of new versions

Session duration, % of failed sessions

vV v . v VY

Other analyfical data

» Rapidly crosses into wider domains

Surfacing errors to Ul

» Collecting errors makes it clearer which ones matter
» UX work to surface errors

» Understandable

» Actionable

» Non-annoying

» Easier to justify to developers (or management) based on collated data

Privacy, etc

>

Don’'t want to record any personal data
Use a UUID generated on first-run to cluster issues by user
Sentry strips usernames from file paths, etc

» Does notrecord IPs or even region

First-run Ul consents the crash-reporter

Missing Featfurese

» Sentry-Native can’t do user input on crash subbmission
» Questionable how much this would add

» Capfturing last rendered frame would be great
» Except for all the trouble it brings

Lessons learned

» Infuifion is usually wrong

» Any reporting will be very informative
» ‘Do something, and measure it’

» |terative process
» Add tracing data incrementally

» Fasterrelease cycle helps

