
Why does it do that?



Background

u James Turner, james@[flightgear.org|kdab.com]

u C++ developer for 25+ years

u Consultant developer at KDAB

u Contributed to open-source projects for 20+ years
u Assorted feature work, especially around UI/UX

u Build and release engineering

u Often the point of contact for end-user problem reports



FlightGear

u Legacy C++ codebase
u Open-source, many contributors
u Runs on all major desktop platforms

u Extensively data-driven via XML and scripts
u Loads user-generated content

u Including scripts

u Content downloaded during runtime
u OpenGL
u Free-form threading



5 Stages of a user-reported failure

u Denial : ‘that can’t happen’

u Anger : ‘how the <expletive> does that happen’

u Bargaining : ‘if you change X, does it still happen?’

u Depression : ‘I hate computers’

u Acceptance : ‘Ohhhhhhhhh. I hate computers. Fix is pushed.’



What I thought going into this

u Users report the software is ‘more unstable than the last version’

u Getting good feedback is hard

u On macOS & Linux, some users would send backtraces
u Much easier to fix the issues

u Let’s integrate a crash reporter and life will be better!



Crash-reporting technology pieces

u Crash-reporting library or process 
u deployed with your application

u Build you app in release mode with debug symbols
u If using CMake, use RelWithDebInfo with care

u Extract / archive those symbols (PDBs, dSYM etc)

u Strip the code before packaging & deployment

u Automate this on CI (Jenkins)



... And achieve nothing …

u CrashRpt
u Simple, Windows only

u HTTP POST to an end-point you supply
u To a directory on my DreamHost

u Directory full of zipped MiniDumps



… And the pieces that make it useful

u Aggregation backend (web service)

u Symbolication with vendor symbols (Microsoft, Intel, AMD, nVidia)

u Correlating symbol artefacts to builds / releases

u Annotating runs with meta-data

u Statistical grouping based on metadata



Crash context

u What was the user doing? 

u What important configuration is set?

u What anomalous things have already occurred?

Well, if we already have a reporting backend, let’s collect this 
information as the program runs. When a crash occurs, we can include 
it in the report, and hopefully make any trends clearer.



Practical Notes

u For FlightGear, I’m using Sentry.io
u Also used at KDAB by some customers

u APIs for many languages
u native backend wraps Crashpad or Breakpad

u Command-line tool to upload symbols, define releases, etc

u Offers various self-hosting and hosted solutions

u I can heartily recommend it (#notsponsored)
u They accept pull requests and respond to bug reports



The ‘typical’ crash

u Expected to find code as shown on the 
right

u Steps to reproduce are reliable

u Code-read in the problem area

u Trivial to fix with crash trace

auto myPtr = getFoo();
myPtr->engageRotor();

Airport* a;
if (a && a->getTower()->getPosition()) { …



An anthology of crashes

u Computers are slow

u Users are very impatient (or UI is bad)

u Archaic hardware

u Weird system configurations

u File-systems (especially on Windows) fail in all kinds of ways
u %$@!$# OneDrive 

u malloc() does actually fail



Impatience

u Database built on first run
u Takes 1-5 minutes

u Progress dialog runs on the main thread

u Rebuild task uses a worker thread 
internally

DatabaseRebuildTask t;
t.start();

ProgressDialog d;
d.setUpdateCallback([&t, &d]() { 

if (t.isDone()) d.close();

d.setProgress(t.getPercentComplete
());
});
d.exec();

// continue with application startup
// do something using the DB
// crash, DB is not built yet?!



More Impatience

u Custom UI for menubar, inside the window

u macOS uses native menubar

u GUI is initialised during early startup

u Splash screen blocks window event interaction during loading



Still more impatience

u Code as shown

u Crash preparing some stuff
u Twice, what?

u Multiple clicks on the button 
before the window actually 
closes

Startup::onLaunchMainThing
{

prepareSomeStuff();
closeStartupWindow();

}

…
StartupWindow s;
s.exec();
…
// cool, startup is done, continue with 
main thing



Malloc, etc

u C++ (eg, STL) throws std::bad_alloc

u Caught in various places, hard to debug

u set_new_handler to the recuse!
u Explicitly log an error report (and backtrace)



Slowness, network style

u HTTP check for new update on startup

u Reports back to startup GUI

u HTTP requests are ref-counted, cleaned up once done

u For some users, timeout after a long time

u Startup GUI is gone

Solution: add proper cancellation API to HTTP requests, so a 
cancelled request doesn’t report failure when cancelled



Drivers L

u Check available OpenGL versions
u Give some clear user feedback if we can’t run

u Check when first window is created
u NOPE

u Attempt to create an offscreen context

u Check the version which is returned

u Still crashes on some ancient Intel drivers

u Delicate ordering of calls seems to fix most cases



(Your) over-confidence is your 
weakness

u “Cool, the number of crash reports is manageable. How about non-crashing failures”

u Record stack-trace in constructor of our base exception class

Oooops.
100x increase L



Non-crash failures

u Downloaded files 
u Just broken (malformed XML)

u replaced with firewall / proxy error HTML

u appearing as 0-bytes

u UI leading to broken setups

u Gross configuration errors (non-parseable files)

u Non-supported OpenGL surface / texture formats
u Quite a few of these do crash however :-)



DontReadMe.txt

u Content (aircraft) downloaded as a Zip

u Relative paths inside the content (textures, UI files) referenced relative to 
the directory name

u GitHub sets an automatic directory name
u Based on the branch

u Download page, readme, etc:
u ‘You must rename the directory to foobar’

u All files are ‘not found’



SQLITE_BUSY

u SQLite allows concurrent processes to access the DB

u Users (un-)intentionally launch multiple copies

u APIs return BUSY to indicate you should retry
u Fine, DB exec wrapper does a loop+sleep+back-off

u Still getting occasional BUSY errors?!

u Query prepare call on startup can also fail



Old paths

u List of add-on paths
u Added by user from file picker

u Saved / loaded to persistent preferences

u Validate paths on load

u GUI view of paths
u Initialise from list of paths, skip missing paths

u Invalid paths persist internally forever L



Conclusions



Trend Analysis

u First version containing an issue is invaluable
u Eventually L

u Correlation of tag data gives clues

u Uptake of new versions

u Session duration, % of failed sessions

u Other analytical data
u Rapidly crosses into wider domains



Surfacing errors to UI

u Collecting errors makes it clearer which ones matter

u UX work to surface errors
u Understandable

u Actionable

u Non-annoying

u Easier to justify to developers (or management) based on collated data



Privacy, etc

u Don’t want to record any personal data

u Use a UUID generated on first-run to cluster issues by user

u Sentry strips usernames from file paths, etc
u Does not record IPs or even region

u First-run UI consents the crash-reporter



Missing Features?

u Sentry-Native can’t do user input on crash submission

u Questionable how much this would add

u Capturing last rendered frame would be great
u Except for all the trouble it brings



Lessons learned

u Intuition is usually wrong

u Any reporting will be very informative
u ‘Do something, and measure it’

u Iterative process
u Add tracing data incrementally

u Faster release cycle helps


