
1



ABSTRACTION 
PATTERNS

kate@gregcons.com

www.gregcons.com/kateblog

@gregcons

Kate Gregory

2



FIRST, THANKS

• To Conor Hoekstra, for the truth about speaking

• To Guy Davidson, for Beautiful C++

• To Tony Van Eerd, for a SOLID talk at C++ Now 2021 

Kate Gregory @gregcons                                                                       ACCU 2022 3



WE TEACH ABSTRACTION LIES

• Abstractions are best discovered before any code is written

• It’s important to learn notations for writing down abstractions (design)

• To create an abstraction, you need a deep understanding of the domain

• business, engineering, science, regulations 

• Once you’ve abstracted a system, you’re all set

Kate Gregory @gregcons                                                                       ACCU 2022 4



THE TRUTH

• Some abstractions are discovered during design

• They do need a pre-code notation

• It does require domain knowledge to discover them

• Finding those abstractions doesn’t mean you’re done

• You are likely to continue to find abstractions for the life of the software

• Finding those abstractions is done completely differently from the ones you 
find in design

Kate Gregory @gregcons                                                                       ACCU 2022 5



COMPLETELY DIFFERENTLY

• You do not need domain knowledge

• You do not record these abstractions in some non-code notation

• You do not check with “the business” to see if you have them right

• They arise from the code

• You record them in the code

Kate Gregory @gregcons                                                                       ACCU 2022 6



STORIES OF MY WORK

• I teach people Modern C++

• I work to reduce fear of C++

• I rescue failing projects

• I help teams who own code they can’t understand or maintain

Kate Gregory @gregcons                                                                       ACCU 2022 7



WHAT IS AN ABSTRACTION?

• Something with a name

• Not just a class

• A way to reduce repetition and duplication

• A way to isolate parts of a problem

• Sometimes, something another person already wrote and tested

• A lookup table, string, collection, command-line-option-parser

• std::find(), std::all_of(), swap() … and of course, that’s a rotate!

• Abstraction localizes and minimizes complexity

Kate Gregory @gregcons                                                                       ACCU 2022 8



Several thousand lines of 
code working with 50 
member variables is not very 
far from global mutable state

WHY PROVIDE MISSING 
ABSTRACTIONS?

Kate Gregory @gregcons                                                                       ACCU 2022 9



EXAMPLES

Kate Gregory @gregcons                                                                       ACCU 2022 
10



LITERAL (MAGIC) NUMBERS 
BECOME NAMED CONSTANTS

• Local or in a class

• Often the name is in a comment nearby

• 0 or 1 exempted

• Make sure someone else hasn’t done it for you

• DaysPerWeek implies you should be converting durations with help from 
<chrono>

• std::numbers::pi awaits you in <numbers>

Kate Gregory @gregcons                                                                       ACCU 2022 11



MANY #DEFINES BECOME AN ENUM
#define RTB 1000 //basic report

#define RTC 2000 // customer-requested report

#define RTBC 2001 // customer-requested, for a big customer

• So many mistakes to make here

enum ReportTypes

{

Basic,

Customer,

BigCustomer,

// . . . 

};

Kate Gregory @gregcons                                                                       ACCU 2022 12



MANY PARAMS BECOME A STRUCT

Update(true, false, false, false, false, false, true);

// . . 

Update(true, false, true, false, false, false, false);

• Consecutive parameters of the same type are a nightmare

• But too many, no matter the type, are unpleasant

• The more so if there is a usual or default value

Kate Gregory @gregcons                                                                       ACCU 2022 13



struct UpdateOptions

{

bool Europe = false;

bool YearEnd = false;

bool NoticesSent = false;

bool IncludeLoans = false;

bool RefreshTables = false;

bool ExtraAuditEntries = false;

bool Preliminary = false;

};

bool Update(UpdateOptions opt);

Kate Gregory @gregcons                                                                       ACCU 2022 14



UpdateOptions EuropePrelim;

EuropePrelim.Europe = true;

EuropePrelim.Preliminary = true;

Update(EuropePrelim);

// . . 

UpdateOptions EuropeSent;

EuropeSent.Europe = true;

EuropeSent.NoticesSent = true;

Update(EuropeSent);

Kate Gregory @gregcons                                                                       ACCU 2022 15



OBVIOUS (BUT WRONG) GUESSES

void DrawRect(int, int, int, int);

• X and y co-ords? One xy plus a height and a width?

void DrawRect(Point, Point);

Kate Gregory @gregcons                                                                       ACCU 2022 16



IS IT JUST A STRUCT?

• Passing 3 strings and a float becomes passing an abstraction

• Perhaps this free function that takes a T should actually be a member 
function of T

• Don’t automatically add getters, setters etc

• Is there an invariant?

• Are there other nearby variables and functions that belong here?

Kate Gregory @gregcons                                                                       ACCU 2022 17



OUT PARAMS ARE REPLACED WITH 
RETURNING A STRUCT

• Or possibly a pair, or a tuple

• Or std::optional or expected

Kate Gregory @gregcons                                                                       ACCU 2022 18



VARIABLES WITH SIMILAR NAMES 
BECOME MEMBERS OF A CLASS

string empfirstname;

string emplastname;

string emptitle;

int empsalary;

• May actually be spread out a little, declared and initialized at once, etc

• Common prefix is typical “in the wild”

class Employee { string firstname; string lastname; string title; int 
salary; /* ... */ };

Kate Gregory @gregcons                                                                       ACCU 2022 19



CLUMPS OF VARIABLES BECOME 
OBJECTS

• Easy to spot when stuff is declared before initializing

int startval, endval;

int numpoints;

double avg;

double tolerance;

int lat, lon;

int alt;

bool visible;

bool secure;

Kate Gregory @gregcons                                                                       ACCU 2022 20



100 LINES OF CODE BECOMES A FUNCTION

• Blank lines are again the key

• Comments are also a free clue

• Use your refactoring tool

• Minimize parameters to and from the new function

• If you’re left with a function that contains just 50 other function calls, consider 
another layer of abstraction

• 5 functions that each call 10

• Does that add value? Isolate the problem? Give things names?

• Or just add confusion? 

Kate Gregory @gregcons                                                                       ACCU 2022 21



SIMILAR CLASSES USE INHERITANCE

• With or without polymorphism

• Put the commonality in the base class

Kate Gregory @gregcons                                                                       ACCU 2022 22



SIMILAR FUNCTIONS BECOME A TEMPLATE

• Probably not your first reflex

• Can I just pass some common base class of the things this function works with 
and use polymorphism?

• Can I find something they all have (eg all containers have iterators) and pass 
that instead?

• Can I put the commonality in a helper function and have each overload call it?

• These choices aren’t wrong

• But a template is often cleaner

Kate Gregory @gregcons                                                                       ACCU 2022 23



A CLASS WITH A “TYPE” MEMBER 
SWITCHES TO INHERITANCE

• There’s nothing inherently wrong with having a “report type” member in the 
Report class, or “account type” member in the Account class

• But as a system grows, it can be a pain point

• Giant switch statements get longer as more types are added

• Some functions have no common lines, just the switch

Kate Gregory @gregcons                                                                       ACCU 2022 

24



void printHeader(Report const& r)

{

// ... common stuff

switch (r.getReportType())

{

case Basic:

//basic header

break;

case Customer:

//customer header

break;

case BigCustomer:

//big customer header

break;

default:

//nothing

break;

}

// ... lots more common stuff

} Kate Gregory @gregcons                                                                       ACCU 2022 25



bool FooterNeeded(Report const& r)

{

switch (r.getReportType())

{

case Basic:

return true;

case Customer:

case BigCustomer:

return false;

default:

assert(false); //you forgot to add a case above

}

}

Kate Gregory @gregcons                                                                       ACCU 2022 26



INHERITANCE
• Base class Report

• Derived: BasicReport, CustomerReport, …

• Small overrides:

bool BigCustomerReport::FooterNeeded() 

{ 

return false; 

}

• Easy to write and read

• Make the functions pure virtual in the base: can’t forget to do one

• Or have a default implementation in the base class if you prefer

Kate Gregory @gregcons                                                                       ACCU 2022 27



SPLITTING CLASSES

• If a class is hard to name, it’s probably doing too much

• Holds two or more smaller abstractions

• Consider splitting it

• Looking at its responsibilities and what it tracks may be revealing

Kate Gregory @gregcons                                                                       ACCU 2022 28



LOOK FOR WHITESPACE

• With or without comments

• Gaps in lists of private member variables

• Gaps in lists of public member functions

• Gaps between blocks of code

• These are arranging the items into groups. Listen to that

Kate Gregory @gregcons                                                                       ACCU 2022 
29



WHY NOT HAVE EVERYTHING 
TOGETHER?

• Because it makes things easy

• You start using things without thinking about what else is affected

• Perhaps everything else is affected

• Consider global mutable state

• Separating things generally improves the design

• Keep like with like

• Explicitly pass information across boundaries

• Minimize what goes across boundaries

Kate Gregory @gregcons                                                                       ACCU 2022 30



SPLITTING A CLASS: WHERE DO I 
PUT THE FUNCTIONS?

• If a function works with 3 things from one clump and 4 from another, which 
new class should it be a member function of?

• Imagine and consider both

• Also consider a free function (or member function of the containing class) that 
takes an instance of each of the new classes

• Make the information connections explicit and obvious

Kate Gregory @gregcons                                                                       ACCU 2022 
31



HUGE INTERFACE

int getx();

int gety();

Color getforeground();

Color getbackground();

std::string gettext();

// . . .

Kate Gregory @gregcons                                                                       ACCU 2022 32



SEGREGATED INTERFACE

Location getlocation();

Appearance getappearance();

Content getcontent();

• A Location has getx() and gety()

• An Appearance has getforeground() or getforegroundcolor()

• A Content has gettext()

• etc

Kate Gregory @gregcons                                                                       ACCU 2022 33



THINK ABOUT CHANGES

• When the code that used getx and gety now needs another parameter…

• Do you change Location?

• Or does it need something that isn’t Location?

• Having to think about this means better design

• Programmers in a hurry just make things work

• Often take dependencies, or make changes that ripple

• Encapsulation and abstraction protect from that

Kate Gregory @gregcons                                                                       ACCU 2022 34



SOME MORE PATTERNS AND THINGS TO 
LOOK FOR 

Kate Gregory @gregcons                                                                       ACCU 2022 35



MOVE WORK FROM THE 
PREPROCESSOR TO THE BUILD SYSTEM

#if defined WIN32

auto a_pressed = bool{GetKeyState('A') & 0x8000 != 0};

#elif defined LINUX

auto a_pressed = /*really quite a lot of code*/

#endif
• Becomes

#include "keypress.h"

//…

auto a_pressed = key_state('A');

• And your build process includes and links the appropriate library for each 
platform you target

Kate Gregory @gregcons                                                                       ACCU 2022 
36



LOOK FOR THE WORD “AND”

• GetWidthAndHeight

• You’re missing an abstraction

• GetSize

• FindLimitsAndAverage (to be “efficient”)

• Still missing an abstraction

• UpdateCachedValues

Kate Gregory @gregcons                                                                       ACCU 2022 37



USE THE ABSTRACTIONS YOU HAVE

Kate Gregory @gregcons                                                                       ACCU 2022 40



BE AS SPECIFIC AS POSSIBLE

bool any = false;

for (unsigned int i = 0; i < nums.size(); ++i)

{

if (nums[i] == 3)

{

any = true;

break;

}

}

Kate Gregory @gregcons                                                                       ACCU 2022 

41



BE AS SPECIFIC AS POSSIBLE

bool any = false;

for (auto n:nums)

{

if (n == 3)

{

any = true;

break;

}

}

Kate Gregory @gregcons                                                                       ACCU 2022 42



BE AS SPECIFIC AS POSSIBLE

auto it = std::find(begin(nums), end(nums), 3);

bool any = (it != end(nums));

Kate Gregory @gregcons                                                                       ACCU 2022 
43



BE AS SPECIFIC AS POSSIBLE

bool any = std::any_of(begin(nums), end(nums),

[](auto n) {return n == 3; });

Kate Gregory @gregcons                                                                       ACCU 2022 44



HOW IS THAT AN ABSTRACTION?

• The ranged for is an abstraction compared to a for loop. It holds the idea of 
doing something exactly once to each element of a collection

• std::find is an abstraction compared to a loop. It combines the loop with the 
== operator

• std::any_of is an abstraction compared to find. It includes the idea that at 
least one instance was found

• As we use more specific and precise abstractions, we gain information (in 
the names) and shed work (because some of the work is now inside the 
abstraction)

Kate Gregory @gregcons                                                                       ACCU 2022 

45



CALL TO ACTION

• Look at your code with new eyes

• Not just your ancient legacy code, but what you write this week

• Are there abstractions hiding there?

• Could you make it more readable by providing them?

• Can you convert a comment to a name?

• Are gaps and whitespace screaming at you?

• What can you gain by spotting abstraction patterns?

Kate Gregory @gregcons                                                                       ACCU 2022 
46


