SANDBOX GAMES

OLAFUR WAAGE

Olafur Waage

Senior Software Developer - TurtleSec AS
@olafurw on Twitter

TuntleSee

| must go forward where | have never
G‘ been instead of backwards where |
have.

| must go forward where | have never
G‘ been instead of backwards where |
have.

- Winnie the Pooh

e WHAT THIS TALK IS AND ISN'T

e WHAT THIS TALK IS AND ISN'T

This is not a game development or game
design talk. A while ago | was making @
game using WebAssembly and these are
the walls | encountered along the way

e WHAT THIS TALK IS AND ISN'T

This is not a game development or game
design talk. A while ago | was making @
game using WebAssembly and these are
the walls | encountered along the way

This is not a comprehensive talk about
WebAssembly.

e WHAT THIS TALK IS AND ISN'T

This is not a game development or game
design talk. A while ago | was making @
game using WebAssembly and these are
the walls | encountered along the way

This is not a comprehensive talk about
WebAssembly.

The idea here is to be pragmatic and
learn what this tool has to offer and what
problems it can solve.

‘ What is WebAssembly?

‘ What is WebAssembly?

How can something be neither Web nor Assembly?

e WHAT IS WEBASSEMBLY?

o WebAssembly is a binary format* originally
designed to allow for performant execution of
code within browsers.

12

e WHAT IS WEBASSEMBLY?

o WebAssembly is a binary format* originally
designed to allow for performant execution of
code within browsers.

> Announced 2015

13

e WHAT IS WEBASSEMBLY?

o WebAssembly is a binary format* originally
designed to allow for performant execution of
code within browsers.

> Announced 2015
> Working Drafts in 2018

14

e WHAT IS WEBASSEMBLY?

o WebAssembly is a binary format* originally
designed to allow for performant execution of
code within browsers.

> Announced 2015
> Working Drafts in 2018
> W3C recommendation in 2019

15

WHAT IS WEBASSEMBLY?

WebAssembly is a binary format* originally
designed to allow for performant execution of
code within browsers.

> Announced 2015
> Working Drafts in 2018
> W3C recommendation in 2019

WebAssembly can be thought of as the target
output of any language and in recent times
can be executed outside of the web.

16

(func $getBoardSize (;29;) (export "getBoardSize™) (result i32)

(local $var@ i32)
i32.const 4
local.set $vard
local.get $vare
return

17

WEBASSEMBLY EXAMPLES?

Many of you might associate WebAssembly
with games only, and even though this talk is
also doing that, WebAssembly has so much
more to offer.

18

WEBASSEMBLY EXAMPLES?

Many of you might associate WebAssembly
with games only, and even though this talk is
also doing that, WebAssembly has so much
more to offer.

Here are some examples of things you might
not have thought are written with
WebAssembly.

19

= [T X
(-]

@ Uno Calculator ¥ IR
[0 ¢ ra-la.ags

& - C @& calculator.platform.uno

e s Calculator The Winelerees Calcuilation’ i dleveloped with 1 o Platonn (Apache 2.0) -
@Uno wi u by Uno Platform With Uno you can create single-codebase apps for Mobile, Desktop and WebAssembly using only GF and XAML 1 O Y
riaTronw Tiy.Uno Platform

= Standard Sl (e

There’s no history yet

20

Figma

Subway map ~

weews Carnier ¥

42 M

Route Map

cee

— Wotweod

Aider Ry

@eeo B - ~ =

21

File Edit

00 |aso Imoo Isso |m |zso lzoo llSO
L T 1 B D B N B I R R R R AR U N)

oc»-l

°m|

ow

I

SO

om.—l

ooml

|

aunNn

oow

LT

ouwl

ooal

(T |

k -397,-189

Image Layers Animation - Tools

‘Dc’l}a

7200

Centre

B0 OeNem

|iDO |LSO Izoa 250
LI B B RECEEIRE IS TIRE EZIRESE

Show Grid
Show Rulers
Show Guides

Lock Guides

Split Screen

Lock Splitter

Scroll Zoom

|3m |3so Inoo |Aso lsoo Isso Isoo |eso Iwo |7so
L S b Tyl trrr b o Tttt brea LB IS I S L

Colour e
—_ #ab3131
| 4
l O
Py
@ _— %
- +
- +
Layers -]
@ layerl
Qx1 + v ~ i

22

[Blogged] You can now run #tensorflowjs on a
) y backend

TensorFlow.js running on
WebAssembly backend e

Done in 239 ms (not including preprocessing: 198 ms)

Robert Aboukhalil / APR 5, 2019 / 7 comments

How We Used WebAssembly To Speed Up
Our Web App By 20X (Case Study)

(- 10 min read 9 JavaScript, Browsers, WebAssembly, Apps

W Share on Twitter, LinkedIn

quick summary = In this article, we explore how we can speed up web
applications by replacing slow JavaScript calculations with compiled
WebAssembly.

If you haven'’t heard, here’s the TL;DR: WebAssembly is a new
language that runs in the browser alongside JavaScript. Yes, that’s
right. JavaScript is no longer the only language that runs in the
browser!

ABOUT THE AUTHOR

Robert is the author of the book
“Level Up With WebAssembly” and is

a Bioinformatics Software Engineer
at Invitae, where he develops web
applications for the ... More about

Robert &>

24

‘ What is Emscripten?

‘ What is Emscripten?

WebAssembly before WebAssembly

e WHAT IS EMSCRIPTEN?

o We originally had asm.js from Mozilla which
had similar goals to WebAssembly, to run
efficient code on the web.

27

WHAT IS EMSCRIPTEN?

We originally had asm.js from Mozilla which
had similar goals to WebAssembly, to run
efficient code on the web.

asm.js is a subset of JavaScript and your lower
level code would then be transpiled into it.

28

WHAT IS EMSCRIPTEN?

We originally had asm.js from Mozilla which
had similar goals to WebAssembly, to run
efficient code on the web.

asm.js is a subset of JavaScript and your lower
level code would then be transpiled into it.

This is where Emscripten came into plau.

29

e WHAT IS EMSCRIPTEN?

¢y Emscripten is based on the LLVM/Clang
toolchains which allows you target
WebAssembly as the binary output.

30

WHAT IS EMSCRIPTEN?

Emscripten is based on the LLVM/Clang
toolchains which allows you target
WebAssembly as the binary output.

This allows you to get many different types of
outputs, not only WASM files but .js and .html

31

INSTALLING EMSCRIPTEN

) Let’s go over the installation process and setup
a simple development environment.

- Text editor is VSCode

- WSL2 running Ubuntu 20.04
- https://github.com/olafurw/talk-accu-webassembly

32

A olafurw@DESKTOP-NNTUFAV: - X Gp A

olafurw@DESKTOP-NNTUFAV:~$ sudo your-favorite-package—-manager install python3 cmake git

33

A olafurw@DESKTOP-NNTUFAV: - X Gp A

olafurw@DESKTOP-NNTUFAV:~$ sudo your—favorite-package—-manager install python3 cmake git
olafurw@DESKTOP-NNTUFAV:~$ git clone https://github.com/emscripten—-core/emsdk.git

34

A olafurw@DESKTOP-NNTUFAV: - X Gp A

olafurw@DESKTOP-NNTUFAV:~$ sudo your-favorite-package-manager install python3 cmake git
olafurw@DESKTOP-NNTUFAV:~$ git clone https://github.com/emscripten—-core/emsdk.git
olafurw@DESKTOP-NNTUFAV:~$ cd emsdk/

35

A olafurw@DESKTOP-NNTUFAV: - X Gp A

olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:

~$ sudo your-favorite-package-manager install python3 cmake git
~$ git clone https://github.com/emscripten—-core/emsdk.git

~$ cd emsdk/

~/emsdk$ git pull

36

A olafurw@DESKTOP-NNTUFAV: - X Gp A

olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:

~$ sudo your-favorite-package-manager install python3 cmake git
~$ git clone https://github.com/emscripten—-core/emsdk.git

~$ cd emsdk/

~/emsdk$ git pull

~/emsdk$./emsdk install latest

37

A olafurw@DESKTOP-NNTUFAV: - X Gp A

olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:

~$ sudo your-favorite-package-manager install python3 cmake git
~$ git clone https://github.com/emscripten—-core/emsdk.git

~$ cd emsdk/

~/emsdk$ git pull

~/emsdk$./emsdk install latest

~/emsdk$./emsdk activate latest

38

A olafurw@DESKTOP-NNTUFAV: - X Gp A

olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:
olafurw@DESKTOP-NNTUFAV:

~$ sudo your-favorite-package-manager install python3 cmake git
~$ git clone https://github.com/emscripten—-core/emsdk.git

~$ cd emsdk/

~/emsdk$ git pull

~/emsdk$./emsdk install latest

~/emsdk$./emsdk activate latest

~/emsdk$ source ./emsdk_env.sh

39

A ©lafurw@DESKTOP-NNTUFAV: - X

olafurw@DESKTOP-NNTUFAV:~/emsdk$ emcc --version

A olafurw@DESKTOP-NNTUFAV: - X g

olafurw@DESKTOP-NNTUFAV:~/emsdk$ emcc —--version

emcc (Emscripten gcc/clang-like replacement + linker emulating GNU 1d) 2.0.32 (2213884b85ae8803fUau20349d55eUU58736U606)
Copyright (C) 2014 the Emscripten authors (see AUTHORS.txt)

This is free and open source software under the MIT license.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

41

A olafurw@DESKTOP-NNTUFAV: - X S

olafurw@DESKTOP-NNTUFAV:~/emsdk$ emcc —-version
emcc (Emscripten gcc/clang-like replacement + linker emulating GNU 1d) 2.0.32 (2213884b85ae8803fUau20349d55eUU58736U606)

Copyright (C) 2014 the Emscripten authors (see AUTHORS.txt)
This is free and open source software under the MIT license.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

olafurw@DESKTOP-NNTUFAV:~/emsdk$ which emcc
/home/olafurw/emsdk/upstream/emscripten/emcc

42

e HEY, WORLD, WHAT IS UP?

oy Now we have the Emscripten compiler installed
IN our system.

43

HEY, WORLD, WHAT IS UP?

Now we have the Emscripten compiler installed
IN our system.

Time for the time honored tradition of the hello
world example.

44

HEY, WORLD, WHAT IS UP?

Now we have the Emscripten compiler installed
IN our system.

Time for the time honored tradition of the hello
world example.

But there are a few more steps in this one than
you’d normally expect.

45

C hello worldc M X

wasm-helloworld > C hello_world.c > ...
#include <stdio.h>

1

No v B wWwWN

int main()

{

}

printf("hello, world!\n");
return 0;

46

C hello worldec M X

wasm-helloworld > C hello_world.c > ...

1 #include <stdio.h>
2
3 int main()
4
5 printf("hello, world!\n");
6 return 0;
7 }
$ buildsh M X

wasm-helloworld > $ build.sh

1 emcc hello world.c;

47

C hello worldec M X
wasm-helloworld > C hello_world.c > ...
1 #include <stdio.h>

2
3 int main()
45
5 printf("hello, world!\n");
6 return 0;
7 }
$ buildsh M X

wasm-helloworld > $ build.sh
1 emcc hello world.c;

v wasm-helloworld 3
|JS a.outjs U
M a.outwasm U

48

$ build-htmlsh M X
wasm-helloworld > $ build-html.sh
1 emcc hello world.c -o hello world.html;

49

$ build-htmlsh M X
wasm-helloworld > $ build-html.sh
1 emcc hello world.c -o

<> hello_world.html
35 hello_world,js
M hello_world.wasm

hello world.html;

50

$ build-htmlsh M X
wasm-helloworld > $ build-html.sh
1 emcc hello world.c -o hello world.html;

<> hello_world.html U
JS hello_world.js U
M hello_world.wasm U
¢> hello_world.html 1,U X 35 hello_worldjs U X
wasm-helloworld > < hello_worldhtml > ... wasm-helloworld > J5 hello_worldjs > ...
‘ z 2405
1298 </html> 2404 run();
— 2405
1300 2406
1301 2407
2408

51

e JUST RUN IT ALREADY!

) Yes, with nodejs we can run the js files just fine.

52

e JUST RUN IT ALREADY!

) Yes, with nodejs we can run the js files just fine.

But let’s start by opening the HTML file directly.
Should be no problem, right?

53

€@ \/ALLNUMBERT

Of CORS there’s a problem here

® YOUR SAFETY IS PARAMOUNT

) Browsers don't like opening random files from
whatever location you decide.

55

YOUR SAFETY IS PARAMOUNT

Browsers don’t like opening random files from
whatever location you decide.

There’s a thing called “Cross-origin resource
sharing (CORS)”. By default browsers don'’t like
loading external files from disk using file://

56

YOUR SAFETY IS PARAMOUNT

Browsers don’t like opening random files from
whatever location you decide.

There’s a thing called “Cross-origin resource
sharing (CORS)”. By default browsers don'’t like
loading external files from disk using file://

The browser will load the html file fine but any
external dependency will probably be blocked.

57

e RUN EM RUN!

o) Best way to solve this is to run a webserver
that is going to host the files.

58

e RUN EM RUN!

o) Best way to solve this is to run a webserver
that is going to host the files.

What | use while developing is emrun, a tool
that comes with emscripten.

59

RUN EM RUN!

Best way to solve this is to run a webserver
that is going to host the files.

What | use while developing is emrun, a tool
that comes with emscripten.

emrun is a simple webserver but for our
development purposes it is good enough.

60

$ run-htmlsh A X

wasm-helloworld > $ run-html.sh

1 emrun --port 8080 hello world.html;

61

$ run-htmlsh A X

wasm-helloworld > $ run-html.sh

1 emrun --port 8080 hello world.html;

= O X
& Emscripten-Generated Code X -+ (v)
& 5 C © locahost8080/hello... & Yr M = @ :

' emscripten

[JResize canvas M Lock/hide mouse pointer | Fullscreen |

[Eameen—_siage=—_ = |
hello, world!

e VIDEO GAMES!

> Now let’s look at the game we will be “making”.

63

e VIDEO GAMES!

> Now let’s look at the game we will be “making”.

We are going to make a simple sliding puzzle
game, similar to games like “Threes” and
“2048”

64

e ENOUGH FUN

oy Now let’s covert this game over to
WebAssembly.

65

e ENOUGH FUN

oy Now let’s covert this game over to
WebAssembly.

There are two ways to do this.

66

e ENOUGH FUN

oy Now let’s covert this game over to
WebAssembly.

There are two ways to do this.

- Keep the drawing in JS and game logic in
C++

67

e ENOUGH FUN

oy Now let’s covert this game over to
WebAssembly.

There are two ways to do this.

- Keep the drawing in JS and game logic in
C++

- Do everything in C++

68

ENOUGH FUN

Now let’s covert this game over to
WebAssembly.

There are two ways to do this.

- Keep the drawing in JS and game logic in
C++

- Do everything in C++

We will look at both, and the walls we hit along
the way.

69

@ |ET'SSTART CONVERTING

) So let’s take some of the functions we have in
the JS version and convert them over to C++

70

@ |ET'SSTART CONVERTING

) So let’s take some of the functions we have in
the JS version and convert them over to C++

Some of them don’t even need to know about
game state, so let’s start with them.

71

16
17
18
19
20
21
22
23
24
25
26

function getRandomCoordinate()

{
¥

return Math.floor(Math.random() * 4);

function isOutbounds(x, v)

{

return x >= board.length || x < @ || y >= board.length || y < ©;

72

#include <emscripten.h>
static constexpr int boardSize = 4;
extern "C" {

EMSCRIPTEN_KEEPALIVE
bool isOutbounds(int x, int y)

{

return x >= boardSize || x < @ || y >= boardSize || y < 0;

h
¥

73

#include <emscripten.h>
static constexpr int boardSize = 4;
extern "C" {

EMSCRIPTEN_KEEPALIVE
bool isOutbounds(int x, int y)

{

return x >= boardSize || x < @ || y >= boardSize || y < 0;

emcc -g -gsource-map --no-entry -s STANDALONE WASM game logic.cpp -o game logic.html;

74

var importObject = {};
WebAssembly.instantiateStreaming(fetch('game logic.wasm'), importObject)
.then((results) =>

{

var isOutbounds = results.instance.exports.isOutbounds;

1)

75

16
17
18
19
20
21
22
23
24
25
26

Great, onto the next function.

function getRandomCoordinate()

{
h

return Math.floor(Math.random() * 4);

function isOutbounds(x, v)

{
¥

return x >= board.length || x < @ || y >= board.length || y < 0;

76

© \//LLNUMBER?

Where we’re going, there is no OS

e SO RANDOM

O With this standalone WASM file, there is no
operating system level functionality.

78

e SO RANDOM

O With this standalone WASM file, there is no
operating system level functionality.

You're all on your own*

79

SO RANDOM

With this standalone WASM file, there is no
operating system level functionality.

You're all on your own*

So how do we solve this problem?

80

e EMSCRIPTEN SAVIORS

o Using random, calling timer functions and
many other OS level functionality has to come
from somewhere.

81

EMSCRIPTEN SAVIORS

Using random, calling timer functions and
many other OS level functionality has to come
from somewhere.

Thankfully there is a solution to this, where if

you build a js file in addition to your .wasm file,

you will get many of these functionalities from
the javascript side.

82

EMSCRIPTEN SAVIORS

Using random, calling timer functions and
many other OS level functionality has to come
from somewhere.

Thankfully there is a solution to this, where if

you build a js file in addition to your .wasm file,

you will get many of these functionalities from
the javascript side.

But how does it work? Can we do it ourselves?

83

e EMSCRIPTEN RANDOM

float emscripten_random (void)

Return type

float

Returns

A random number.

Generates a random number in the range 0-1. This maps to Math. random!

84

e EMSCRIPTEN RANDOM

float emscripten_random (void)

Return type

float

Returns

A random number.

Looks great, but how do we use it?

Generates a random number in the range 0-1. This maps to Math.random()

85

#include <emscripten.h>
extern "C" {

EMSCRIPTEN_KEEPALIVE
int getRandomCoordinate()

{

return emscripten_random();

86

#include <emscripten.h>
extern "C" {

EMSCRIPTEN_KEEPALIVE
int getRandomCoordinate()

{

return emscripten_random();

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
</head>
<body>

<script type="text/javascript">
var importObject = {};
WebAssembly.instantiateStreaming(fetch('functions.wasm'), importObject)
.then((results) =>

{
var getRandomCoordinate = results.instance.exports.getRandomCoordinate;
; console.log(getRandomCoordinate());
1
</script>
</body>

</html>

87

- " !DOCTYPE html
#include <emscripten.h>) .

<html>
<head>
<meta charset="utf-8"/>
extern "C" { </head>
<body>
EMSCRIPTEN_KEEPALIVE <script type="text/javascript">
> . var importObject = {};
int getRandomCoor‘dlnate() WebAssembly.instantiateStreaming(fetch('functions.wasm'), importObject)
{ .then((results) =>
. {
return emSCI"lpten_I"andom(); var getRandomCoordinate = results.instance.exports.getRandomCoordinate;
} console.log(getRandomCoordinate());
1s
</script>
</body>
} </html>
® » Uncaught (in promise) TypeError: WebAssembly.instantiate(): Import #0 index.html:1

module="env" error: module is not an object or function

88

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
</head>
<body>

<script type="text/javascript">
var importObject = {
env: {}
¥
WebAssembly.instantiateStreaming(fetch('functions.wasm'), importObject)
.then((results) =>

{
var getRandomCoordinate = results.instance.exports.getRandomCoordinate;
console.log(getRandomCoordinate());
1)
</script>
</body>

</html>

89

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
</head>
<body>

<script type="text/javascript">
var importObject = {
env: {}
¥
WebAssembly.instantiateStreaming(fetch('functions.wasm'), importObject)
.then((results) =>

{
var getRandomCoordinate = results.instance.exports.getRandomCoordinate;
console.log(getRandomCoordinate());
})s
</script>
</body>
</html>
® »Uncaught (in promise) LinkError: WebAssembly.instantiate(): Import #0 index.html:1

module="env" function="emscripten_random” error: function import requires a callable

90

[E] functions.wasm X

0x00+f3
0x00f4
0x00+5
Bx00f5
0x00+9
0x00fb
Oxeefd
Bx00fe
0x0103
0x0104
0x0106
0x0108
0x0109
0x010a
0x016b
Bx0111

' (module
(func %=
(table ¢

“emscripten_random”) (result f32))

(;9;) (import "env
le (;08;) (export "__indirect_function_table”) 2 2 funcref)

(memory fmem (e;) (export “"memory"”) 256 256)
(global %globa (mut i32) (i32.const 5243920))
(elem %=icm@® (i32.const 1) funcref (ref.func & initialize))
(func ¢ tialize (;1;) (export " _initialize")

nop
)
(-Func Lo ndom)
(local fvard £32)
call $e S5
local.tee fva
f32.abs
f32.const 2147483648
£32.1t
if
local.get ¢
i32.trunc_132 s
return

end

i32.const -2147483648

(;2;) (export "getRandomCoordinate™) (result i32)

91

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
</head>
<body>

<script type="text/javascript">
var importObject = {

env: {
emscripten_random: function()
{
return Math.random();
1
}s

s
WebAssembly.instantiateStreaming(fetch('functions.wasm'), importObject)
.then((results) =>

{
var getRandomCoordinate = results.instance.exports.getRandomCoordinate;
console.log(getRandomCoordinate());
1
</script>
</body>

</html>

92

e ONWARDS

o) Great, so now we can move over the rest of the
game logic.

93

e ONWARDS

o) Great, so now we can move over the rest of the
game logic.

The board is an array of arrays of ‘Box and
the rest of the game logic is basically identical.

94

ONWARDS

Great, so now we can move over the rest of the
game logic.

The board is an array of arrays of ‘Box and
the rest of the game logic is basically identical.

So now the gameplay can be simulated and
called from JS, now we need to draw that data.

95

© \/ALLNUMBER3

Where’s the data?

e |REMEMBER

) We can communicate between C++ and JS
using primitive types as you saw before, but as
soon as things get a bit more complicated, we
are in trouble.

97

e |REMEMBER

) We can communicate between C++ and JS
using primitive types as you saw before, but as
soon as things get a bit more complicated, we
are in trouble.

We could view the raw data of a std::vector
within the memory of WebAssembly, but
converting between a vector and a javascript
list is not automatic

98

WE'RE IN A BIND

There is something called Embind that can help
with passing more complex objects over to JS

EMSCRIPTEN_BINDINGS(my_class_example) {
class_<MyClass>("MyClass")
.constructor<int, std::string>()

function("incrementX", &MyClass::incrementX)

.property("x", &MyClass::getX, &My(Class::setX)

.class_function("getStringFromInstance", &MyClass::getStringFromInstance)

99

e WEREINABIND

¢y Embind even has helpers to bind common
objects, like std:vector

Vectors

class <std::vector<T>> register_vector (const char *name)

template<typename T>

class_<std::vector<T>> register_vector(const char* name)

A function to register a std

‘param const char* name

100

e |REMEMBER

¢y You can even define a shared block of memory
that can then be used by either JS or C++

101

e |REMEMBER

¢y You can even define a shared block of memory
that can then be used by either JS or C++

Also there is the option to return a pointer to JS

102

e |REMEMBER

¢y You can even define a shared block of memory
that can then be used by either JS or C++

Also there is the option to return a pointer to JS

But this is in the territory where you need to be
a bit more careful with how each byte is used
and represented.

103

WE DON'T NEED IT

Thankfully, | wrote the game logic to only use
simple primitives, so we can finish converting
all of the functions over to C++ and expose
them to JS to use as needed.

104

WE DON'T NEED IT

Thankfully, | wrote the game logic to only use
simple primitives, so we can finish converting
all of the functions over to C++ and expose
them to JS to use as needed.

Let’s look at this version of the implementation.

105

e |ET'SNOTSTOP HERE!

&y Now we have basically everything except the
rendering in the C++ version.

106

e |ET'SNOTSTOP HERE!

&y Now we have basically everything except the
rendering in the C++ version.

So let’s move that over as well.

107

LET'S NOT STOP HERE!

Now we have basically everything except the
rendering in the C++ version.

So let’s move that over as well.

Thankfully Emscripten has great support for
exactly what we need.

108

® SDL1and?2

¢y Emscripten has built in support for SDL which is
a cross platform library that provides among
many things graphical rendering support.

109

SDLT and 2

Emscripten has built in support for SDL which is
a cross platform library that provides among
many things graphical rendering support.

There is also support for SDL2 but it needs to
be downloaded (which happens on first
compile)

10

SDLT and 2

Emscripten has built in support for SDL which is
a cross platform library that provides among
many things graphical rendering support.

There is also support for SDL2 but it needs to
be downloaded (which happens on first
compile)

-s USE SDL=2 -s USE SDL TTF=2

m

e GLUE THAT CODE

o) Also since we will use SDL2 and other built in
functionality, we will use the generated JS glue
code.

12

GLUE THAT CODE

Also since we will use SDL2 and other built in
functionality, we will use the generated JS glue
code.

So instead of creating the importObject
ourselves and implementing the functions that
are needed, Emscripten has does this for us.

13

int main()
{

createBox(@, 9, 2);

SDL_Init(SDL_INIT VIDEO);
SDL_CreateWindowAndRenderer (400, 400, 0, &window, &renderer);

TTE _Init();
font = TTF_OpenFont("/assets/arial-bold.ttf", 30);

generateCache();

startTime = SDL_GetTicks();
delta = ©;

emscripten_set main_loop(game loop, 0, 1);

M4

RENDERING FUN

Now | port over the rendering code, which
thankfully for this example is just a simple
colored rectangle. (I wait with displaying the
text for now)

15

RENDERING FUN

Now | port over the rendering code, which
thankfully for this example is just a simple
colored rectangle. (I wait with displaying the
text for now)

Everything compiles and looks like it should be.

16

RENDERING FUN

Now | port over the rendering code, which
thankfully for this example is just a simple
colored rectangle. (I wait with displaying the
text for now)

Everything compiles and looks like it should be.

| run the code, | see the box and then...

17

® » Uncaught RuntimeError: Aborted(Cannot enlarge memory arrays to size game.js:1229

42995712 bytes (OOM). Either (1) compile with -s INITIAL_MEMORY=X with X higher than
the current value 42532864, (2) compile with -s ALLOW MEMORY_GROWTH=1 which allows
increasing the size at runtime, or (3) if you want malloc to return NULL (@) instead of
this abort, compile with -s ABORTING MALLOC=0)

at abort (game.js:1229)

at abortOnCannotGrowMemory (game.js:8202)

at _emscripten_resize heap (game.js:8208)

at sbrk (sbrk.c:78)

at dlmalloc (dlmalloc.c:4173)

at internal _memalign (dlmalloc.c:4976)

at dlmemalign (dlmalloc.c:5343)

at game.js:1255

at mmapAlloc (game.js:2393)

at syscallMmap2 (game.js:6141)

18

@ //LLNUMBER4

The sandbox isn’t infinite

19

e MEMORY MANAGEMENT

o Up to this point | have been using the default
memory size and it has just happened to fit.

120

MEMORY MANAGEMENT

Up to this point | have been using the default
memory size and it has just happened to fit.

But we need more memory now since SDL is
involved.

121

e MEMORY MANAGEMENT

o Up to this point | have been using the default
memory size and it has just happened to fit.

But we need more memory now since SDL is
involved.

-S INITIAL_MEMORY=256MB -s TOTAL_MEMORY=256MB -s ALLOW_ MEMORY_GROWTH=1

122

e T[EXT ADVENTURE

o) Great, this compiles and we see the box drawn
in the canvas as before.

123

TEXT ADVENTURE

Great, this compiles and we see the box drawn
in the canvas as before.

So let’s draw the text that should appear within
the box.

124

© \/~LLNUMBERS

File not found

125

e EMPTY SANDBOX

) The environment we are in does not have
much else outside of what we have given it.

126

EMPTY SANDBOX

The environment we are in does not have
much else outside of what we have given it.

So the font file we want to use does not exist,

and the idea of a filesystem is different from

what we expect. We have to provide the files.

127

EMPTY SANDBOX

The environment we are in does not have
much else outside of what we have given it.

So the font file we want to use does not exist,
and the idea of a filesystem is different from
what we expect. We have to provide the files.

--preload-file ../assets@/assets/

128

EMPTY SANDBOX

The environment we are in does not have
much else outside of what we have given it.

So the font file we want to use does not exist,
and the idea of a filesystem is different from
what we expect. We have to provide the files.

--preload-file ../assets@/assets/

TTE Init();
font = TTF_OpenFont("/assets/arial-bold.ttf", 30);

129

e (CMAKE

& What Emscripten also provides is helper utilities
to use common development tools like make
and cmake. So | also wrote a simple CMake file
for building the project.

130

e (CMAKE

& What Emscripten also provides is helper utilities
to use common development tools like make
and cmake. So | also wrote a simple CMake file
for building the project.

emmake make clean && emcmake cmake .. & & emmake make

131

cmake_minimum_required (VERSION 3.2)
project(game)

set (CMAKE_EXECUTABLE_SUFFIX ".html")
add_executable(game box.cpp game_logic.cpp)

set(EM_FLAGS "")

set(EM_FLAGS "${EM_FLAGS} -fsanitize=address --profiling")

set(EM_FLAGS "${EM_FLAGS} --shell-file ../index.html --preload-file ../assets@/assets/")
set(EM_FLAGS "${EM FLAGS} -02 -g -gsource-map --source-map-base http://localhost:808e/")
set(EM_FLAGS "${EM_FLAGS} -s USE_SDL=2 -s USE_SDL_TTF=2")

set(EM_FLAGS "${EM_FLAGS} -s INITIAL_ MEMORY=256MB -s TOTAL_MEMORY=256MB -s ALLOW_MEMORY_GROWTH=1")
set_target_properties(game PROPERTIES LINK_FLAGS ${EM_FLAGS})

132

e |T'S RUNNING!

o Great! So now we have everything running.

Let’s look at it in action!

133

o SUMMARY

o) Let’s summarize the walls we encountered.

134

o SUMMARY

o) Let’s summarize the walls we encountered.

- Files need to be served while developing

135

o SUMMARY

o) Let’s summarize the walls we encountered.

- Files need to be served while developing
- All functionality you depend on (ie. OS) needs to be
implemented or given to you

136

o SUMMARY

o) Let’s summarize the walls we encountered.

- Files need to be served while developing

- All functionality you depend on (ie. OS) needs to be
implemented or given to you

- Data needs to be primitives or converted in some
way before sending to JS

137

o SUMMARY

o) Let’s summarize the walls we encountered.

- Files need to be served while developing

- All functionality you depend on (ie. OS) needs to be
implemented or given to you

- Data needs to be primitives or converted in some
way before sending to JS

- Memory size and growth needs to be thought about

138

o SUMMARY

o) Let’s summarize the walls we encountered.

- Files need to be served while developing

- All functionality you depend on (ie. OS) needs to be
implemented or given to you

- Data needs to be primitives or converted in some
way before sending to JS

- Memory size and growth needs to be thought about

- Required files need to be embedded or preloaded
with the output

139

140

- Just one more thing...

141

Olafur Waage

Senior Software Developer - TurtleSec AS
@olafurw on Twitter

https://github.com/olafurw/talk-accu-webassembly

142

