

VERIFIABLE COMPUTING AN INTRODUCTION

AHTO TRUU SOFTWARE ARCHITECT, GUARDTIME

ACCU CONFERENCE, 09-APR-2022

ABOUT GUARDTIME

- + Systems engineering company focusing on data security solutions
- + Founded in 2007 in Tallinn, Estonia
- + Global HQ in Lausanne, Switzerland
- + Offices in US, EU and China
- + 150 employees
- + 80% engineers and researchers
- + https://guardtime.com/

AGENDA

- Motivation
- + Cryptographic tools
- + Arithmetic circuits and programs
- + Verifiable computations

guardtime 🕰 🖰

1/ MOTIVATION

VERIFIABLE COMPUTING

- + A client outsources some work to a server
- + The server returns the results
 - and a proof that the results are correct

- + Has also been called
 - Certified computation
 - Delegation of computation
 - Computational integrity

AUTHENTICATED DATA STRUCTURES

- The server maintains a database for the client
- + For every update request
 - proof that the update was applied
 - proof that nothing else was changed
- + For every query
 - proof that the results match the current state of the database

GENERAL COMPUTATIONS

- + A client outsourcing to a cloud provider
- + IoT devices supported by external servers
- + Smart contracts executed on a blockchain

- Useful when verification is cheaper than execution
- For some computations this comes naturally
- + For the rest, extra work on the server side

INTEGRITY VS CONFIDENTIALITY

+ What parties are allowed to see what data?

- + Verifiable electronic voting
- + Privacy-preserving meter readings
- + Private transactions on a blockchain

guardtime 🕰 🖰

2/ CRYPTOGRAPHIC TOOLS

DISCRETE LOGARITHM PROBLEM

- + Given m, g and y, find x such that $g^x \mod m = y$
- + Trivial to solve without the modulus
- + Can be infeasibly difficult in the "modular" form
- + Solution efficiently verifiable using the "square and multiply" method
 - to compute g^{13}
 - observe that $13 = 1101_2$
 - compute g^2 , g^4 , g^8 , then $g^{13}=g\cdot g^4\cdot g^8$

CRYPTOGRAPHIC COMMITMENTS

- + Fix an input x, compute and publish commitment y = C(x)
- + Later "open" x and prove relationship to y
- + Binding and hiding properties
- + Naïve: compute $y = g^x \mod m$
- + Pedersen: pick random r, compute $y = g^x \cdot h^r \mod m$
- + Observe that in both cases $C(x_1 + x_2) = C(x_1) \cdot C(x_2)$

ZERO-KNOWLEDGE PROOFS

- Prove that you know something
- + But without revealing that something
- + Digital signatures
 - creation of a signature only possible with private key
 - signature verification proves the signer knows the key
 - the key itself not revealed in the process
- + Recall also $C(x_1 + x_2) = C(x_1) \cdot C(x_2)$

BILINEAR MAPPINGS

- + Consider functions $G_1 \times G_1 \rightarrow G_2$
- + Function e is a bilinear map if $e(a \cdot x, b \cdot y) = a \cdot b \cdot e(x, y)$
- + If G_2 is multiplicative, the rule becomes $e(a \cdot x, b \cdot y) = e(x, y)^{a \cdot b}$

3/ ARITHMETIC CIRCUITS AND PROGRAMS

ARITHMETIC CIRCUITS

- Representation of computations
- + Wire values are numbers
- Gates are additions and multiplications

+
$$(c_1 + c_2) \cdot (c_3 \cdot c_4)$$

- + No loops: unrolled by the compiler
- + No conditionals: **a** ? **b** : **c** replaced with $a \cdot b + (1 a) \cdot c$
- + Polynomial-sized circuits equivalent to polynomial-time Turing machines

QUADRATIC ARITHMETIC PROGRAMS (1)

+ Encoding of arithmetic circuits as sets of polynomials

- + Pick arbitrary r_5 , r_6
- + Pick polynomials $v_k(x)$, $w_k(x)$, $y_k(x)$ satisfying the table on the right

	(r_5, r_6)		(r_5, r_6)		(r_5, r_6)
$v_1(r_i)$	(0,1)	$w_1(r_i)$	(0,0)	$y_1(r_i)$	(0,0)
$v_2(r_i)$	(0,1)	$w_2(r_i)$	(0,0)	$y_2(r_i)$	(0,0)
$v_3(r_i)$	(1,0)	$w(r_i)$	(0,0)	$y_3(r_i)$	(0,0)
$v_4(r_i)$	(0,0)	$w_4(r_i)$	(1,0)	$y_4(r_i)$	(0,0)
$v_5(r_i)$	(0,0)	$w_5(r_i)$	(0,1)	$y_5(r_i)$	(0,1)
$v_6(r_i)$	(0,0)	$w_6(r_i)$	(0,0)	$y_6(r_i)$	(1,0)

QUADRATIC ARITHMETIC PROGRAMS (2)

+ Define

+
$$p(x) = (\sum c_k \cdot v_k(x)) \cdot (\sum c_k \cdot w_k(x)) - (\sum c_k \cdot y_k(x))$$

+
$$t(x) = (x - r_5) \cdot (x - r_6)$$

+ Require t(x) divides p(x)

	(r_5,r_6)		(r_5, r_6)		(r_5, r_6)
$v_1(r_i)$	(0,1)	$w_1(r_i)$	(0,0)	$y_1(r_i)$	(0,0)
$v_2(r_i)$	(0,1)	$w_2(r_i)$	(0,0)	$y_2(r_i)$	(0,0)
$v_3(r_i)$	(1,0)	$w(r_i)$	(0,0)	$y_3(r_i)$	(0,0)
$v_4(r_i)$	(0,0)	$w_4(r_i)$	(1,0)	$y_4(r_i)$	(0,0)
$v_5(r_i)$	(0,0)	$w_5(r_i)$	(0,1)	$y_5(r_i)$	(0,1)
$v_6(r_i)$	(0,0)	$w_6(r_i)$	(0,0)	$y_6(r_i)$	(1,0)

guardtime 🕰 🖰

4/ VERIFIABLE COMPUTATIONS

FORMAL DEFINITION

- + $(EK_F, VK_F) \leftarrow \text{KeyGen}(F, 1^{\lambda})$
- + $(y, \pi_y) \leftarrow \text{Compute}(EK_F, u)$
- + $\{0,1\} \leftarrow \text{Verify}(VK_F, u, y, \pi_y)$

PINOCCHIO

- + Joint work of MS Research and IBM Research
 - takes a function implemented in subset of C
 - converts it into QAP representation
 - derives the key generation, computer/prover and verifier code
- + Milestone result: first time ever verifier was faster than native execution

PINOCCHIO: KFY GENERATION

- + $(EK_F, VK_F) \leftarrow \text{KeyGen}(F, 1^{\lambda})$
- + F to circuit to QAP: t(x), V, W, Y; I_{IO} , I_{mid} , e, g
- + Pick r_v , r_w , s, α_v , α_w , α_y , β , γ
- + $r_y = r_v \cdot r_w$, $g_v = g^{r_v}$, $g_w = g^{r_w}$, $g_y = g^{r_y}$
- + EK_F : $\{g_v^{v_k(s)}\}$, $\{g_w^{w_k(s)}\}$, $\{g_y^{y_k(s)}\}$, $\{g_v^{\alpha_v \cdot v_k(s)}\}$, $\{g_w^{\alpha_w \cdot w_k(s)}\}$, $\{g_y^{\alpha_y \cdot y_k(s)}\}$, $\{g_v^{\beta_v \cdot v_k(s)} \cdot g_w^{\beta_w \cdot w_k(s)} \cdot g_y^{\beta_y \cdot y_k(s)}\}$
- + VK_F : g^1 , g^{α_v} , g^{α_w} , g^{α_y} , g^{γ} , $g^{\beta \cdot \gamma}$, $g_v^{t(s)}$, $\{g_v^{v_k(s)}, g_w^{w_k(s)}, g_v^{y_k(s)}\}$

	(r_5,r_6)		(r_5,r_6)		(r_5,r_6)
$v_1(r_i)$	(0,1)	$w_1(r_i)$	(0,0)	$y_1(r_i)$	(0,0)
$v_2(r_i)$	(0,1)	$w_2(r_i)$	(0,0)	$y_2(r_i)$	(0,0)
$v_3(r_i)$	(1,0)	$w(r_i)$	(0,0)	$y_3(r_i)$	(0,0)
$v_4(r_i)$	(0,0)	$w_4(r_i)$	(1,0)	$y_4(r_i)$	(0,0)
$v_5(r_i)$	(0,0)	$w_5(r_i)$	(0,1)	$y_5(r_i)$	(0,1)
$v_6(r_i)$	(0,0)	$w_6(r_i)$	(0,0)	$y_6(r_i)$	(1,0)

PINOCCHIO: EVALUATION AND PROOF

- + $(y, \pi_y) \leftarrow \text{Compute}(EK_F, u)$:
- + Compute $y \leftarrow F(u)$, learn $\{c_i\}$ in the process
- + Find h(x) such that $p(x) = t(x) \cdot h(x)$
- + π_y : $g_v^{v_{mid}(s)}$, $g_w^{w_{mid}(s)}$, $g_y^{y_{mid}(s)}$, $g^{h(s)}$, $g_v^{\alpha_v \cdot v_{mid}(s)}$, $g_w^{\alpha_w \cdot w_{mid}(s)}$, $g_y^{\alpha_y \cdot y_{mid}(s)}$, $g_v^{\beta \cdot v_{mid}(s)}$, $g_w^{\beta \cdot w_{mid}(s)} \cdot g_y^{\beta \cdot y_{mid}(s)}$, where $v_{mid}(s) = \sum_{k \in I_{mid}} c_k \cdot v_k(s)$, and similarly $w_{mid}(s)$, $y_{mid}(s)$

PINOCCHIO: VFRIFICATION

- + $\{0,1\} \leftarrow \text{Verify}(VK_F, u, y, \pi_y), \pi_y = g^V, g^W, g^Y, g^H, g^{V'}, g^{W'}, g^{Y'}, g^Z$
- + Divisibility: compute $g_v^{v_{IO}(s)} = \prod_{k \in I_{IO}} (g_v^{v_k(s)})^{c_k}$ and $g_w^{w_{IO}(s)}$, $g_w^{w_{IO}(s)}$, then check that $e(g_v^{v_{IO}(s)} \cdot g_v^{v_{mid}(s)}, g_w^{w_{IO}(s)} \cdot g_w^{w_{mid}(s)}) = e(g_y^{t(s)}, g^H) \cdot e(g_y^{y_{IO}(s)} \cdot g_y^{y_{mid}(s)}, g)$
- + Linear combinations: $e(g_v^{V'},g)=e(g_v^{V},g^{\alpha_v})$, $e(g_w^{W'},g)=e(g_w^{W},g^{\alpha_w})$, $e(g_v^{Y'},g)=e(g_v^{Y},g^{\alpha_y})$, $e(g^Z,g^Y)=e(g_v^{V}\cdot g_w^{W}\cdot g_v^{Y},g^{\beta\cdot Y})$

PRIVATE INPUTS

- + Some private data D under commitment C(D)
- + Want to verifiably compute F(D)
- Generic solution
 - compute (F(D), C(D)) instead
 - then check that C(D) matches

- + Pinocchio has direct support for partially private data
- + More efficient than the generic scheme above

REFERENCES

- + Quadratic programs: Gennaro, Gentry, Parno, Raykova, 2012 https://eprint.iacr.org/2012/215
- + Pinocchio: Parno, Gentry, Howell, Raykova, 2013 https://eprint.iacr.org/2013/279

- + zk-SNARKS
- + zk-STARKS
- + Bulletproofs

THANK YOU

QUESTIONS?

AHTO.TRUU@GUARDTIME.COM @AHTOTRUU